题目内容

15.在极坐标系中,圆C的极坐标方程为:ρ2=4ρ(cosθ+sinθ)-6.若以极点O为原点,极轴所在直线为x轴建立平面直角坐标系.
(Ⅰ)求圆C的直角坐标方程及其参数方程;
(Ⅱ)在直角坐标系中,点P(x,y)是圆C上动点,求x+y的最大值,并求出此时点P的直角坐标.

分析 (Ⅰ)利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得圆C的直角坐标方程,从而可得参数方程;
(Ⅱ)由(Ⅰ)可得,x+y=4+$\sqrt{2}$(cosθ+sinθ)=4+2sin($θ+\frac{π}{4}$),即可求x+y的最大值,并求出此时点P的直角坐标.

解答 解:(Ⅰ)因为ρ2=4ρ(cosθ+sinθ)-6,
∴x2+y2=4x+4y-6,
即(x-2)2+(y-2)2=2为圆C的直角坐标方程.      …(4分)
所以所求的圆C的参数方程为$\left\{\begin{array}{l}{x=2+\sqrt{2}cosθ}\\{y=2+\sqrt{2}sinθ}\end{array}\right.$(θ为参数).                      …(6分)
(Ⅱ)由(Ⅰ)可得,x+y=4+$\sqrt{2}$(cosθ+sinθ)=4+2sin($θ+\frac{π}{4}$)        …(8分)
当 $θ=\frac{π}{4}$时,即点P的直角坐标为(3,3)时,x+y取到最大值为6.…(10分)

点评 本题考查点的极坐标和直角坐标的互化,考查参数方程的运用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网