题目内容

函数f(x)=
x3
3
-4x+4在[0,3]的最大值为(  )
A、1
B、4
C、5
D、-
4
3
考点:利用导数求闭区间上函数的最值
专题:导数的概念及应用
分析:由已知得f′(x)=x2-4,令f′(x)=0,得x=2或x=-2(舍),再由f(0)=4,f(2)=-
4
3
,f(3)=1,能求出函数f(x)=
x3
3
-4x+4在[0,3]的最大值.
解答: 解:∵f(x)=
x3
3
-4x+4,
∴f′(x)=x2-4,
由f′(x)=0,得x=2或x=-2(舍),
∵f(0)=4,f(2)=-
4
3
,f(3)=1,
∴函数f(x)=
x3
3
-4x+4在[0,3]的最大值为4.
故选:B.
点评:本题考查函数在闭区间上最大值的求法,是中档题,解题时要认真审题,注意导数性质的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网