题目内容
已知等差数列{an}中,a6+a8=10,a3=1,则a11的值是( )
| A、15 | B、9 | C、10 | D、11 |
考点:等差数列的性质
专题:等差数列与等比数列
分析:根据等差数列的性质即可得到结论.
解答:
解:在等差数列{an}中,a6+a8=a3+a11=10,
∴a11=10-a3=10-1=9,
故选:B
∴a11=10-a3=10-1=9,
故选:B
点评:本题主要考查等差数列的性质,在等差数列中,若m+n=p+q,则am+an=ap+aq,要求熟练掌握此性质.
练习册系列答案
相关题目
用反证法证明命题:“a1,a2,a3,a4至少有一个数大于25”时,假设正确的是( )
| A、假设a1,a2,a3,a4都大于25 |
| B、假设a1,a2,a3,a4都小于或等于25 |
| C、假设a1,a2,a3,a4至多有一个数大于25 |
| D、假设a1,a2,a3,a4至少有两个数大于25 |
抛物线x2=(2a-1)y的准线方程为y=1,则实数a=( )
A、
| ||
B、
| ||
C、-
| ||
D、-
|
设x=log510,y=e
,z=
,(e是自然对数的底数),则 ( )
| 1 |
| 2 |
| 3 |
| 2 |
| A、x<y<z |
| B、y<x<z |
| C、z<x<y |
| D、x<z<y |
直线2ay-x=0与直线(3a-1)x-ay-1=0平行且不重合,则a等于( )
A、
| ||
B、
| ||
C、0或
| ||
D、0或
|
正三棱锥的高和底面边长都等于6,则其外接球的表面积为( )
| A、8π | B、16π |
| C、32π | D、64π |
若圆的方程为
(θ为参数),当θ=
时,对应点的坐标是( )
|
| π |
| 2 |
| A、(2,0) |
| B、(0,2) |
| C、(-2,0) |
| D、(0,-2) |