题目内容

15.若a1=1,an=-SnSn-1,(n≥2),求an

分析 由已知条件推导出{$\frac{1}{{S}_{n}}$}是首项为1,公差为1的等差数列,从而得到Sn=$\frac{1}{n}$,由此能求出an

解答 解:∵a1=1,an=-SnSn-1,(n≥2),
∴Sn-Sn-1=-SnSn-1,(n≥2),
∴$\frac{1}{{S}_{n}}-\frac{1}{{S}_{n-1}}$=1,又$\frac{1}{{S}_{1}}=\frac{1}{{a}_{1}}$=1,
∴{$\frac{1}{{S}_{n}}$}是首项为1,公比为1的等差数列,
∴$\frac{1}{{S}_{n}}$=1+(n-1)×1=n,
∴Sn=$\frac{1}{n}$,
∴an=Sn-Sn-1=$\frac{1}{n}-\frac{1}{n-1}$=-$\frac{1}{n(n-1)}$,
n=1时,上式不成立,
∴an=$\left\{\begin{array}{l}{1,n=1}\\{-\frac{1}{n(n-1)},n≥2}\end{array}\right.$.

点评 本题考查数列的通项公式的求法,是中档题,解题时要认真审题,注意公式${a}_{n}=\left\{\begin{array}{l}{{S}_{1},n=1}\\{{S}_{n}-{S}_{n-1},n≥2}\end{array}\right.$的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网