ÌâÄ¿ÄÚÈÝ
ÒÑÖªµÈ±ÈÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÇÒS10£ºS5=1£º2£¬ÓÖ¶þ´Îº¯Êýy=
x2+
x+5µÄµ¼º¯ÊýÉÏÓÐһϵÁеãP1£¨x1£¬y1£©£¬P2£¨x2£¬y2£©£¬¡£¬Pn£¨xn£¬yn£©£¬¡£¬n¡Ý1£¬n¡ÊN£¬ÇÒµãPnµÄºá×ø±ê¹¹³ÉµÈ²îÊýÁÐ{xn}£¬ÇÒx3=-
£¬x5=-
£®
£¨1£©Çó¶þ´Îº¯Êý½âÎöʽ¼°µãPnµÄ×ø±ê£»
£¨2£©ÉèÅ×ÎïÏßÁÐC1£¬C2£¬C3£¬¡£¬Cn£¬¡ÖеÄÿһÌõµÄ¶Ô³ÆÖá¶¼´¹Ö±ÓÚxÖᣬÅ×ÎïÏßCnµÄ¶¥µãΪPn£¬ÇÒ¹ýµãDn£¨0£¬n2+1£©£¬¼ÇÓëÅ×ÎïÏßCnÏàÇÐÓÚµãDnµÄÖ±ÏßµÄбÂÊΪkn£¬ÇóÖ¤£º
+
+¡+
£¼
£®
£¨3£©ÉèS={x|x=2xn£¬n¡ÊN*}£¬T={y|y=4yn£¬n¡ÊN*}£¬µÈ²îÊýÁÐ{an}µÄÈÎÒ»Ïîan£¬¡ÊS¡ÉT£¬ÆäÖÐa1ÊÇS¡ÉTÖеÄ×î´óÊý£¬-265£¼a10£¼-125£¬ÇóÊýÁÐ{an}µÄͨÏʽ£®
| S15 |
| S10 |
| 13 |
| 4 |
| 9 |
| 2 |
| 13 |
| 2 |
£¨1£©Çó¶þ´Îº¯Êý½âÎöʽ¼°µãPnµÄ×ø±ê£»
£¨2£©ÉèÅ×ÎïÏßÁÐC1£¬C2£¬C3£¬¡£¬Cn£¬¡ÖеÄÿһÌõµÄ¶Ô³ÆÖá¶¼´¹Ö±ÓÚxÖᣬÅ×ÎïÏßCnµÄ¶¥µãΪPn£¬ÇÒ¹ýµãDn£¨0£¬n2+1£©£¬¼ÇÓëÅ×ÎïÏßCnÏàÇÐÓÚµãDnµÄÖ±ÏßµÄбÂÊΪkn£¬ÇóÖ¤£º
| 1 |
| k1k2 |
| 1 |
| k2k3 |
| 1 |
| kn-1kn |
| 1 |
| 10 |
£¨3£©ÉèS={x|x=2xn£¬n¡ÊN*}£¬T={y|y=4yn£¬n¡ÊN*}£¬µÈ²îÊýÁÐ{an}µÄÈÎÒ»Ïîan£¬¡ÊS¡ÉT£¬ÆäÖÐa1ÊÇS¡ÉTÖеÄ×î´óÊý£¬-265£¼a10£¼-125£¬ÇóÊýÁÐ{an}µÄͨÏʽ£®
¿¼µã£ºÊýÁÐÓë½âÎö¼¸ºÎµÄ×ÛºÏ
רÌ⣺µ¼ÊýµÄ¸ÅÄî¼°Ó¦ÓÃ,µÈ²îÊýÁÐÓëµÈ±ÈÊýÁÐ,¼¯ºÏ
·ÖÎö£º£¨1£©ÔËÓõȱÈÊýÁеÄÇóºÍ¹«Ê½ÇóµÃq5=-
£¬ÔÙ´úÈë¶þ´Îº¯Êýʽ£¬»¯¼ò¿ÉµÃ½âÎöʽ£¬Çó³öyµÄµ¼Êý£¬ÔËÓõȲîÊýÁеÄͨÏ¼´¿ÉµÃµ½xn£¬½ø¶øµÃµ½ÓÐyn£»
£¨2£©ÔËÓôý¶¨ÏµÊý·¨ÇóµÃÅ×ÎïÏßCnµÄ½âÎöʽ£¬ÔÙÇóµ¼Êý£¬µÃµ½ÇÐÏßµÄбÂÊ£¬ÔÙÓÉÁÑÏîÏàÏûÇóºÍ£¬¼´¿ÉµÃÖ¤£»
£¨3£©Çó³ö¼¯ºÏS£¬T£¬ÇóµÃ½»¼¯£¬½áºÏÌõ¼þ£¬ÇóµÃÊýÁеÄÊ×ÏÔÙÓɵȲîÊýÁеÄͨÏʽ£¬¼´¿ÉµÃµ½£®
| 1 |
| 2 |
£¨2£©ÔËÓôý¶¨ÏµÊý·¨ÇóµÃÅ×ÎïÏßCnµÄ½âÎöʽ£¬ÔÙÇóµ¼Êý£¬µÃµ½ÇÐÏßµÄбÂÊ£¬ÔÙÓÉÁÑÏîÏàÏûÇóºÍ£¬¼´¿ÉµÃÖ¤£»
£¨3£©Çó³ö¼¯ºÏS£¬T£¬ÇóµÃ½»¼¯£¬½áºÏÌõ¼þ£¬ÇóµÃÊýÁеÄÊ×ÏÔÙÓɵȲîÊýÁеÄͨÏʽ£¬¼´¿ÉµÃµ½£®
½â´ð£º
£¨1£©½â£ºµÈ±ÈÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÇÒS10£ºS5=1£º2£¬
ÏÔÈ»¹«±È²»Îª1£¬Ôò
£º
=1£º2£¬
»¯¼òµÃ1+q5=
£¬¼´q5=-
£¬Ôò
=
=
=
£¬
¼´Óжþ´Îº¯Êýy=
x2+
x+5£¬y¡ä=3x+
£¬
µÈ²îÊýÁÐ{xn}£¬ÇÒx3=-
£¬x5=-
£¬Ôò¹«²îd=
=-1£¬
Ôòxn=-
-£¨n-3£©=-n-
£¬
¼´ÓÐyn=3£¨-n-
£©+
=-3n-
£¬
Ôò¶þ´Îº¯Êý½âÎöʽy=
x2+
x+5£¬µãPnµÄ×ø±êΪ£¨-n-
£¬-3n-
£©£»
£¨2£©Ö¤Ã÷£ºÉèÅ×ÎïÏßCn£ºy-yn=a£¨x-xn£©2£¬
ÓÉ£¨1£©¿ÉµÃy+3n+
=a£¨x+n+
£©2£¬
Áîx=0£¬Ôòy=a£¨n+
£©2-3n-
=n2+1£¬
½âµÃa=1£¬¼´ÓÐy=£¨x+n+
£©2-£¨3n+
£©£¬
y¡ä=2£¨x+n+
£©£¬¼´ÓÐkn=2n+3£¬
ÓÉ
=
=
£¨
-
£©£¬
ÔòÓÐ
+
+¡+
=
¡Á£¨
-
+
-
+¡+
-
£©
=
¡Á£¨
-
£©£¼
£»
£¨3£©½â£ºS={x|x=2xn=-2n-3£¬n¡ÊN*}£¬T={y|y=4yn=-12n-5£¬n¡ÊN*}£¬
¿ÉµÃS¡ÉT=T£¬TÖÐ×î´óµÄΪ-17£¬
µÈ²îÊýÁÐ{an}µÄÈÎÒ»Ïîan¡ÊS¡ÉT£¬ÆäÖÐa1ÊÇS¡ÉTÖеÄ×î´óÊý£¬
Ôò¹«²îdΪ-12µÄÕýÕûÊý±¶£¬ÇÒa1=-17£¬
ÓÉ-265£¼a10£¼-125£¬¿ÉµÃ-265£¼-17+9d£¼-125£¬
½âµÃ-
£¼d£¼-12£¬¿ÉµÃd=-24£¬
¼´ÓÐan=-17+£¨n-1£©•£¨-24£©=-24n+7£®
ÏÔÈ»¹«±È²»Îª1£¬Ôò
| a1(1-q10) |
| 1-q |
| a1(1-q5) |
| 1-q |
»¯¼òµÃ1+q5=
| 1 |
| 2 |
| 1 |
| 2 |
| S15 |
| S10 |
| 1-q15 |
| 1-q10 |
1+
| ||
1-
|
| 3 |
| 2 |
¼´Óжþ´Îº¯Êýy=
| 3 |
| 2 |
| 13 |
| 4 |
| 13 |
| 4 |
µÈ²îÊýÁÐ{xn}£¬ÇÒx3=-
| 9 |
| 2 |
| 13 |
| 2 |
| x5-x3 |
| 5-3 |
Ôòxn=-
| 9 |
| 2 |
| 3 |
| 2 |
¼´ÓÐyn=3£¨-n-
| 3 |
| 2 |
| 13 |
| 4 |
| 5 |
| 4 |
Ôò¶þ´Îº¯Êý½âÎöʽy=
| 3 |
| 2 |
| 13 |
| 4 |
| 3 |
| 2 |
| 5 |
| 4 |
£¨2£©Ö¤Ã÷£ºÉèÅ×ÎïÏßCn£ºy-yn=a£¨x-xn£©2£¬
ÓÉ£¨1£©¿ÉµÃy+3n+
| 5 |
| 4 |
| 3 |
| 2 |
Áîx=0£¬Ôòy=a£¨n+
| 3 |
| 2 |
| 5 |
| 4 |
½âµÃa=1£¬¼´ÓÐy=£¨x+n+
| 3 |
| 2 |
| 5 |
| 4 |
y¡ä=2£¨x+n+
| 3 |
| 2 |
ÓÉ
| 1 |
| kn-1kn |
| 1 |
| (2n+1)(2n+3) |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| 1 |
| 2n+3 |
ÔòÓÐ
| 1 |
| k1k2 |
| 1 |
| k2k3 |
| 1 |
| kn-1kn |
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 7 |
| 1 |
| 9 |
| 1 |
| 2n+1 |
| 1 |
| 2n+3 |
=
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 2n+3 |
| 1 |
| 10 |
£¨3£©½â£ºS={x|x=2xn=-2n-3£¬n¡ÊN*}£¬T={y|y=4yn=-12n-5£¬n¡ÊN*}£¬
¿ÉµÃS¡ÉT=T£¬TÖÐ×î´óµÄΪ-17£¬
µÈ²îÊýÁÐ{an}µÄÈÎÒ»Ïîan¡ÊS¡ÉT£¬ÆäÖÐa1ÊÇS¡ÉTÖеÄ×î´óÊý£¬
Ôò¹«²îdΪ-12µÄÕýÕûÊý±¶£¬ÇÒa1=-17£¬
ÓÉ-265£¼a10£¼-125£¬¿ÉµÃ-265£¼-17+9d£¼-125£¬
½âµÃ-
| 248 |
| 9 |
¼´ÓÐan=-17+£¨n-1£©•£¨-24£©=-24n+7£®
µãÆÀ£º±¾Ì⿼²éµÈ²îÊýÁк͵ȱÈÊýÁеÄͨÏîºÍÇóºÍ¹«Ê½µÄÔËÓ㬿¼²éÊýÁеÄÇóºÍ·½·¨£ºÁÑÏîÏàÏûÇóºÍ£¬¿¼²éµ¼ÊýµÄ¼¸ºÎÒâÒ壺ÇúÏßÔڸõ㴦ÇÐÏßµÄбÂÊ£¬¿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌâºÍÒ×´íÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÒÑÖªa£¬b£¬c·Ö±ðΪ¡÷ABCµÄÈý¸öÄÚ½ÇA£¬B£¬CµÄ¶Ô±ß£¬Èôa=2
£¬b=2
£¬A=60¡ã£¬Ôò½ÇBµÈÓÚ£¨¡¡¡¡£©
| 3 |
| 2 |
| A¡¢45¡ã»ò135¡ã | B¡¢135¡ã |
| C¡¢60¡ã | D¡¢45¡ã |
¡°cos2¦Á=-
¡±ÊÇ¡°¦Á=k¦Ð+
£¬k¡ÊZ¡±µÄ£¨¡¡¡¡£©
| ||
| 2 |
| 5¦Ð |
| 12 |
| A¡¢³ä·Ö²»±ØÒªÌõ¼þ |
| B¡¢±ØÒª²»³ä·ÖÌõ¼þ |
| C¡¢³äÒªÌõ¼þ |
| D¡¢¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ |
ÈôiΪÐéÊýµ¥Î»£¬Ôòi+i2+i3+i4µÄֵΪ£¨¡¡¡¡£©
| A¡¢-1 | B¡¢i | C¡¢0 | D¡¢1 |
ÒÑÖª¼¯ºÏA={-2£¬0£¬1}£¬B={0£¬1£¬2}£¬ÔòA¡ÈBµÈÓÚ£¨¡¡¡¡£©
| A¡¢{0£¬1} |
| B¡¢{-2£¬0£¬1} |
| C¡¢{-2£¬0£¬1£¬2} |
| D¡¢{-2£¬2} |
| A¡¢16¦Ð | ||
| B¡¢14¦Ð | ||
| C¡¢4¦Ð | ||
D¡¢
|