题目内容
设集合,,则 .
.在平面直角坐标系中,已知,求满足且在圆
上的点的坐标
已知各项均为正数的数列的前项和为,数列的前项和为,且.
⑴证明:数列是等比数列,并写出通项公式;
⑵若对恒成立,求的最小值;
⑶若成等差数列,求正整数的值.
已知顶点在原点,焦点在轴上的抛物线过点.
(1)求抛物线的标准方程;
(2)若抛物线与直线交于、两点,求证:.
若,则等于 .
过椭圆的左顶点A且斜率为的直线交椭圆于另一点,且点在轴上的射影恰为右焦点,若,则椭圆的离心率的值是 .
设函数,.
(1)当时,函数取得极值,求的值;
(2)当时,求函数在区间[1,2]上的最大值;
(3)当时,关于的方程有唯一实数解,求实数的值.
如图,过点的两直线与抛物线相切于A、B两点, AD、BC垂直于直线,垂足分别为D、C.
(1)若,求矩形ABCD面积;
(2)若,求矩形ABCD面积的最大值.
请您设计一个帐篷,它下部的形状是高为1m正六棱柱,上部的形状是侧棱长为3m的正六棱锥(如下图所示)。试问当帐篷的顶点O到底面中心O1的距离为多少时,帐篷的体积最大?