ÌâÄ¿ÄÚÈÝ
10£®Ä³ÑºÔ˹«Ë¾Îª±£ÕÏѺÔ˳µÁ¾ÔËÐа²È«£¬Ã¿ÖÜÐÇÆÚÒ»µ½ÐÇÆÚÎå¶Ô¹æ¶¨Î²ºÅµÄѺÔ˳µÁ¾½øÐб£ÑøÎ¬»¤£¬¾ßÌå±£Ñø°²ÅÅÈçÏ£º| ÈÕÆÚ | ÐÇÆÚÒ» | ÐÇÆÚ¶þ | ÐÇÆÚÈý | ÐÇÆÚËÄ | ÐÇÆÚÎå |
| ±£Ñø³µÁ¾Î²ºÅ | 0ºÍ5 | 1ºÍ6 | 2ºÍ7 | 3ºÍ8 | 4ºÍ9 |
£¨¢ñ£©Çó¸Ã·Ö¹«Ë¾ÔÚÐÇÆÚËÄÖÁÉÙÓÐÒ»Á¾³µÍâ³öÖ´ÐÐѺÔËÈÎÎñµÄ¸ÅÂÊ£»
£¨¢ò£©ÉèX±íʾ¸Ã·Ö¹«Ë¾ÔÚÐÇÆÚÒ»ÓëÐÇÆÚ¶þÁ½ÌìµÄ³ö³µÌ¨ÊýÖ®ºÍ£¬ÇóXµÄ·Ö²¼Áм°ÆäÊýѧÆÚÍûE£¨X£©£®
·ÖÎö £¨¢ñ£©ÀûÓû¥³âʼþÓë¶ÔÁ¢Ê¼þµÄ¸ÅÂʹ«Ê½£¬¼ÆËãËùÇóµÄ¸ÅÂÊÖµ£»
£¨¢ò£©ÓÉÌâÒâÖªXµÄ¿ÉÄÜȡֵ£¬¼ÆËã¶ÔÓ¦µÄ¸ÅÂÊ£¬
д³öËæ»ú±äÁ¿XµÄ·Ö²¼ÁУ¬¼ÆËãÊýѧÆÚÍûÖµ£®
½â´ð ½â£º£¨¢ñ£©Éè¸Ã·Ö¹«Ë¾A¡¢B¡¢CÈýÁ¾ÑºÔ˳µÔÚÐÇÆÚËijö³µµÄʼþ·Ö±ðΪA4¡¢B4¡¢C4£¬
¸Ã·Ö¹«Ë¾ÔÚÐÇÆÚËÄÖÁÉÙÓÐÒ»Á¾ÑºÔ˳µÍâ³öÖ´ÐÐÈÎÎñµÄʼþΪD£¬
Ôò$P£¨D£©=1-P£¨\overline D£©=1-P£¨\overline A\overline B\overline C£©$=$1-\frac{1}{3}¡Á\frac{1}{3}¡Á\frac{1}{2}=\frac{17}{18}$£»¡£¨6·Ö£©
£¨¢ò£©ÓÉÌâÒâÖªXµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬3£»
$P£¨X=0£©=\frac{1}{2}¡Á\frac{1}{3}¡Á\frac{1}{3}=\frac{1}{18}$£¬
$P£¨X=1£©=\frac{1}{2}¡Á\frac{1}{3}¡Á\frac{1}{3}+\frac{1}{2}¡Á\frac{2}{3}¡Á\frac{1}{3}+\frac{1}{2}¡Á\frac{1}{3}¡Á\frac{2}{3}=\frac{5}{18}$£¬
$P£¨X=2£©=\frac{1}{2}¡Á\frac{2}{3}¡Á\frac{2}{3}+\frac{1}{2}¡Á\frac{2}{3}¡Á\frac{1}{3}+\frac{1}{2}¡Á\frac{1}{3}¡Á\frac{2}{3}=\frac{4}{9}$£¬
$P£¨X=3£©=\frac{1}{2}¡Á\frac{2}{3}¡Á\frac{2}{3}=\frac{2}{9}$£»¡£¨10·Ö£©
ËùÒÔËæ»ú±äÁ¿XµÄ·Ö²¼ÁÐΪ
| X | 0 | 1 | 2 | 3 |
| P | $\frac{1}{18}$ | $\frac{5}{18}$ | $\frac{4}{9}$ | $\frac{2}{9}$ |
µãÆÀ ±¾Ì⿼²éÁËÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁÐÓëÊýѧÆÚÍûµÄ¼ÆËãÎÊÌ⣬Ҳ¿¼²éÁË»¥³â¡¢¶ÔÁ¢Ê¼þµÄ¼ÆËãÎÊÌ⣬ÊÇÖеµÌ⣮
| A£® | 0 | B£® | 1 | C£® | 2 | D£® | a |
| A£® | {x|-1£¼x£¼3} | B£® | {x|-3£¼x£¼5} | C£® | {x|x£¼-1»òx£¾3} | D£® | {x|-1£¼x£¼5} |