题目内容

19.设数列{an}的前n项的和为Sn,已知a1=$\frac{3}{2}$,an+1=$\frac{{a}_{n}^{3}}{2{a}_{n}^{2}-3{a}_{n}+2}$,其中n∈N*
(1)证明:an<2;
(2)证明:an<an+1
(3)证明:2n-$\frac{4}{3}$≤Sn≤2n-1+($\frac{1}{2}$)n

分析 (1)an+1-2=$\frac{{a}_{n}^{3}}{2{a}_{n}^{2}-3{a}_{n}+2}$-2=$\frac{({a}_{n}-2)({a}_{n}^{2}-2{a}_{n}+2)}{2{a}_{n}^{2}-3{a}_{n}+2}$,由于${a}_{n}^{2}-2{a}_{n}$+2>0,$2{a}_{n}^{2}-3{a}_{n}$+2>0.可得an+1-2与an-2同号,因此与a1-2同号,而a1-2=-$\frac{1}{2}$<0,即可证明.
(2)an+1-1=$\frac{({a}_{n}-1)({a}_{n}^{2}-{a}_{n}+2)}{2{a}_{n}^{2}-3{a}_{n}+2}$,可得:an+1-1与an-1同号,因此与a1-1同号,而a1-1=$\frac{1}{2}$>0,可得1<an<2.an+1-an=$\frac{-{a}_{n}({a}_{n}-1)({a}_{n}-2)}{2{a}_{n}^{2}-3{a}_{n}+2}$,即可证明an<an+1
(3)n=1时,S1=$\frac{3}{2}$,满足不等式.n≥2时,$\frac{{a}_{n+1}-2}{{a}_{n}-2}$=$\frac{1}{2}(1+\frac{2-{a}_{n}}{2{a}_{n}^{2}-3{a}_{n}+2})$$>\frac{1}{2}$,可得$\frac{2-{a}_{n}}{2-{a}_{1}}$$≥(\frac{1}{2})^{n-1}$,即2-an≥$(\frac{1}{2})^{n}$.
求和可得:Sn≤2n-1+$(\frac{1}{2})^{n}$.另一方面:由(II)可知:$\frac{3}{2}≤{a}_{n}<2$.,$\frac{2-{a}_{n}}{2{a}_{n}^{2}-3{a}_{n}+2}$=$\frac{2-{a}_{n}}{(2{a}_{n}-3)({a}_{n}+2)+4(2+{a}_{n})}$≤$\frac{1}{4}$.从而可得:$\frac{{a}_{n+1}-2}{{a}_{n}-2}$=≤$\frac{5}{8}$.即可证明.

解答 证明:(1)an+1-2=$\frac{{a}_{n}^{3}}{2{a}_{n}^{2}-3{a}_{n}+2}$-2=$\frac{({a}_{n}-2)({a}_{n}^{2}-2{a}_{n}+2)}{2{a}_{n}^{2}-3{a}_{n}+2}$,
由于${a}_{n}^{2}-2{a}_{n}$+2=$({a}_{n}-1)^{2}$+1>0,$2{a}_{n}^{2}-3{a}_{n}$+2=2$({a}_{n}-\frac{3}{4})^{2}$+$\frac{7}{8}$>0.
∴an+1-2与an-2同号,因此与a1-2同号,而a1-2=-$\frac{1}{2}$<0,
∴an<2.
(2)an+1-1=$\frac{({a}_{n}-1)({a}_{n}^{2}-{a}_{n}+2)}{2{a}_{n}^{2}-3{a}_{n}+2}$,可得:an+1-1与an-1同号,因此与a1-1同号,而a1-1=$\frac{1}{2}$>0,∴an>1.
又an<2.∴1<an<2.an+1-an=$\frac{-{a}_{n}({a}_{n}-1)({a}_{n}-2)}{2{a}_{n}^{2}-3{a}_{n}+2}$,可得分子>0,分母>0.
∴an+1-an>0,故an<an+1
(3)n=1时,S1=$\frac{3}{2}$,满足不等式.
n≥2时,$\frac{{a}_{n+1}-2}{{a}_{n}-2}$=$\frac{{a}_{n}^{2}-2{a}_{n}+2}{2{a}_{n}^{2}-3{a}_{n}+2}$=$\frac{1}{2}(1+\frac{2-{a}_{n}}{2{a}_{n}^{2}-3{a}_{n}+2})$$>\frac{1}{2}$,∴$\frac{2-{a}_{n}}{2-{a}_{1}}$$≥(\frac{1}{2})^{n-1}$,即2-an≥$(\frac{1}{2})^{n}$.
∴2n-Sn≥$\frac{\frac{1}{2}[1-(\frac{1}{2})^{n}]}{1-\frac{1}{2}}$=1-$(\frac{1}{2})^{n}$.即Sn≤2n-1+$(\frac{1}{2})^{n}$.
另一方面:由(II)可知:$\frac{3}{2}≤{a}_{n}<2$.,$\frac{2-{a}_{n}}{2{a}_{n}^{2}-3{a}_{n}+2}$=$\frac{2-{a}_{n}}{(2{a}_{n}-3)({a}_{n}+2)+4(2+{a}_{n})}$≤$\frac{1}{4}$.
从而可得:$\frac{{a}_{n+1}-2}{{a}_{n}-2}$=≤$\frac{5}{8}$.
∴2-an≤$\frac{1}{2}×$$(\frac{5}{8})^{n-1}$,∴2n-Sn≤$\frac{1}{2}×$$\frac{1-(\frac{5}{8})^{n}}{1-\frac{5}{8}}$=$\frac{4}{3}$$[1-(\frac{5}{8})^{n}]$.
∴Sn≥2n-$\frac{4}{3}$$[1-(\frac{5}{8})^{n}]$>2n-$\frac{4}{3}$.
综上可得:2n-$\frac{4}{3}$≤Sn≤2n-1+($\frac{1}{2}$)n

点评 本题考查了等差数列的通项公式与求和公式、数列递推关系、分类讨论方法、不等式性质、转化方法,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网