题目内容

7.已知四棱锥P-ABCD的五个顶点都在球O的球面上,底面ABCD是矩形,平面PAD垂直于平面ABCD,在△PAD中,PA=PD=2,∠APD=120°,AB=2,则球O的表面积等于(  )
A.16πB.20πC.24πD.36π

分析 求出△PAD所在圆的半径,利用勾股定理求出球O的半径R,即可求出球O的表面积.

解答 解:令△PAD所在圆的圆心为O1,则
因为PA=PD=2,∠APD=120°,所以AD=2$\sqrt{3}$,所以圆O1的半径r=$\frac{1}{2}×\frac{2\sqrt{3}}{\frac{\sqrt{3}}{2}}$=2,
因为平面PAD⊥底面ABCD,
所以OO1=$\frac{1}{2}$AB=1,
所以球O的半径R=$\sqrt{4+1}$=$\sqrt{5}$,
所以球O的表面积=4πR2=20π.
故选:B.

点评 本题考查球O的表面积,考查学生的计算能力,比较基础.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网