题目内容

15.下列命题正确的个数是(  )
①“在三角形ABC中,若sinA>sinB,则A>B”的否命题是真命题;
②命题p:x≠2或y≠3,命题q:x+y≠5,则p是q的必要不充分条件;
③存在实数x0,使x02+x0+1<0;
④命题“若m>1,则x2-2x+m=0有实根”的逆否命题是真命题.
A.0B.1C.2D.3

分析 ①先写出该命题的否命题:在三角形ABC中,若sinA≤sinB,则A≤B,所以分这样几种情况判断即可:A,B∈(0,$\frac{π}{2}$],A∈(0,$\frac{π}{2}$],B∈($\frac{π}{2}$,π),A∈($\frac{π}{2}$,π),B∈(0,$\frac{π}{2}$];或通过正弦定理判断;②根据必要不充分条件的概念即可判断该命题是否正确;③通过配方判断即可;④先求出命题的逆否命题,再判断正误即可.

解答 解:①该命题的否命题是:在三角形ABC中,若sinA≤sinB,则A≤B;
若A,B∈(0,$\frac{π}{2}$],∵正弦函数y=sinx在(0,$\frac{π}{2}$]上是增函数,∴sinA≤sinB可得到A≤B;
若A∈(0,$\frac{π}{2}$],B∈($\frac{π}{2}$,π),sinA<sinB能得到A<B;
若A∈($\frac{π}{2}$,π),B∈(0,$\frac{π}{2}$],则由sinA≤sinB,
得到sin(π-A)≤sinB,∴π≤A+B,显然这种情况不存在;
综上可得sinA≤sinB能得到A≤B,所以该命题正确;
法二:∵$\frac{a}{sinA}$=$\frac{b}{sinB}$,
∴若sinA>sinB,则a>b,从而有“A>B”,所以该命题正确;
②由x≠2,或y≠3,得不到x+y≠5,比如x=1,y=4,x+y=5,∴p不是q的充分条件;
若x+y≠5,则一定有x≠2且y≠3,即能得到x≠2,或y≠3,∴p是q的必要条件;
∴p是q的必要不充分条件,所以该命题正确;
法二:p是q的必要不充分条件?¬q是¬p的必要不充分条件,
而命题p:x≠2或y≠3,¬P:x=2且y=5,命题q:x+y≠5,¬q:x+y=5,
则¬p⇒¬q,而¬q推不出¬p,
故¬q是¬p的必要不充分条件,即p是q的必要不充分条件,
所以该命题正确;
③由x2+x+1=${(x+\frac{1}{2})}^{2}$+$\frac{3}{4}$>0,故不存在实数x0,使x02+x0+1<0;③错误;
④命题“若m>1,则x2-2x+m=0有实根”的逆否命题是:“若x2-2x+m=0没有实根,则m≤1”,
由△=4-4m≥0,解得:m≤1,故④错误;
故①②正确,选:C.

点评 考查正弦函数的单调性,充分条件、必要条件、必要不充分条件的概念,考查二次函数的性质以及四种命题之间的关系,是一道中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网