题目内容
8.已知公共汽车每7min一班,在车站停留1min,开走后再过7min第二辆车到站,则乘客到达车站立即可以上车的概率为( )| A. | $\frac{1}{7}$ | B. | $\frac{1}{6}$ | C. | $\frac{1}{8}$ | D. | $\frac{1}{9}$ |
分析 本题考查的知识点是几何概型,我们要求出两班列车停靠车站之间时间对应的线段长度,及乘客到达站台立即乘上车的线段长度,然后根据几何概型计算公式,进行运算.
解答 解:由于地铁列车每7分钟一班,则两班列车停靠车站之间时间可用长度为7的线段表示.
而列车在车站停1分钟,乘客到达站台立即乘上车的时间可用长度为1的线段表示.
则乘客到达站台立即乘上车的概率P=$\frac{1}{7}$,
故选A.
点评 几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解决的步骤均为:求出满足条件A的基本事件对应的“几何度量”N(A),再求出总的基本事件对应的“几何度量”N,最后根据P=$\frac{N(A)}{N}$求解.
练习册系列答案
相关题目
18.要描述一个学校的组成情况,应选用( )
| A. | 工序流程图 | B. | 组织结构图 | C. | 知识结构图 | D. | 程序框图 |
3.已知数列{an}是等比数列且数列{|an|}是递增数列,a2+a3=2,a1a4=-8,则a2016=( )
| A. | $\frac{1}{{2}^{2015}}$ | B. | -$\frac{1}{{2}^{2015}}$ | C. | -22015 | D. | 22015 |
8.$\frac{{2-5{i^{2015}}}}{{1+3{i^{2013}}}}$=( )
| A. | $\frac{3}{10}+\frac{9}{10}$i | B. | $\frac{3}{10}-\frac{9}{10}i$ | C. | $-\frac{3}{10}+\frac{9}{10}i$ | D. | $\frac{17}{10}-\frac{1}{10}$i |