题目内容
20.已知|$\overrightarrow{a}$|=a,|$\overrightarrow{b}$|=b,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为θ,则|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{{a}^{2}+{b}^{2}-2abcosθ}$.分析 利用余弦定理解出.
解答 解:由余弦定理得|$\overrightarrow{a}-\overrightarrow{b}$|=$\sqrt{{a}^{2}+{b}^{2}-2abcosθ}$.
故答案为:$\sqrt{{a}^{2}+{b}^{2}-2abcosθ}$.
点评 本题考查了平面向量加法运算的几何意义,余弦定理,属于基础题.
练习册系列答案
相关题目
10.已知点(-1,2)和($\frac{\sqrt{3}}{3}$,0)在直线l:ax-y+1=0(a≠0)的同侧,则直线l倾斜角的取值范围是( )
| A. | ($\frac{π}{4}$,$\frac{π}{3}$) | B. | (0,$\frac{π}{3}$)∪($\frac{3π}{4}$,π) | C. | ($\frac{3π}{4}$,$\frac{5π}{6}$) | D. | ($\frac{2π}{3}$,$\frac{3π}{4}$) |
11.若样本的频率分布直方图如图所示,则样本数据的中位数等于( )
| A. | 30 | B. | 40 | C. | 36.5 | D. | 35 |
8.已知公共汽车每7min一班,在车站停留1min,开走后再过7min第二辆车到站,则乘客到达车站立即可以上车的概率为( )
| A. | $\frac{1}{7}$ | B. | $\frac{1}{6}$ | C. | $\frac{1}{8}$ | D. | $\frac{1}{9}$ |
5.已知函数f(x)=x3-3x-1,g(x)=2x-a,若对任意x1∈[0,2],存在x2∈[0,2]使|f(x1)-g(x2)|≤2,则实数a的取值范围( )
| A. | [1,5] | B. | [2,5] | C. | [-2,2] | D. | [5,9] |
3.设变量x、y满足约束条件$\left\{{\begin{array}{l}{x-y≥0}\\{x+y≤1}\\{x+2y≥1}\end{array}}\right.$,则z=32x-y的最大值为( )
| A. | $\root{3}{3}$ | B. | $\sqrt{3}$ | C. | 3 | D. | 9 |
20.已知命题p1:函数y=ex-e-x在R上为增函数;命题p2:函数y=ex+e-x在R上为减函数,则在命题q1:p1∨p2,q2:p1∧p2,q3:(¬p1)∨p2,q4:p1∧(¬p2)中,真命题是( )
| A. | q1、q3 | B. | q2、q3 | C. | q1、q4 | D. | q2、q4 |