题目内容

18.已知函数f(x)=a•($\frac{1}{3}$)x+bx2+cx(a∈R,b≠0,c∈R),若{x|f(x)=0}={x|f(f(x))=0}≠∅,则实数c的取值范围为[0,4).

分析 设x1∈{x|f(x)=0}={x|f(f(x))=0},从而可推出f(0)=0,从而化简f(x)=bx2+cx;从而可得(bx2+cx)(b2x2+bcx+c)=0与bx2+cx=0的根相同,从而解得.

解答 解:设x1∈{x|f(x)=0}={x|f(f(x))=0},
则f(x1)=0,且f(f(x1))=0,
故f(0)=0,
故a=0;
故f(x)=bx2+cx;
由f(x)=0得,x=0或x=-$\frac{c}{b}$;
f(f(x))=b(bx2+cx)2+c(bx2+cx)=0,
故(bx2+cx)(b2x2+bcx+c)=0,
当c=0时,显然成立;
当c≠0时,方程b2x2+bcx+c=0无根,
故△=(bc)2-4b2c<0,
解得,0<c<4.
综上所述,
0≤c<4,
故答案为:[0,4).

点评 本题考查了集合的相等与函数的关系应用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网