题目内容
(1)
| OD |
| 1 |
| 2 |
| OA |
| OB |
(2)
| OM |
| 1 |
| 3 |
| OA |
| OB |
| OC |
考点:空间向量的加减法
专题:空间向量及应用
分析:(1)点D是AB的中点,利用平行四边形法则可得
+
=2
,即可证明;
(2)由于点M是△ABC三条中线的交点,可得
=
,
=
(
+
)=
(
-
+
-
),
因此
=
+
=
+
(
+
-2
)即可得出.
| OA |
| OB |
| OD |
(2)由于点M是△ABC三条中线的交点,可得
| CM |
| 2 |
| 3 |
| CD |
| CD |
| 1 |
| 2 |
| CB |
| CA |
| 1 |
| 2 |
| OB |
| OC |
| OA |
| OC |
因此
| OM |
| OC |
| CM |
| OC |
| 1 |
| 3 |
| OA |
| OB |
| OC |
解答:
证明:(1)∵点D是AB的中点,∴
+
=2
,∴
=
(
+
);
(2)∵点M是△ABC三条中线的交点,∴
=
,
=
(
+
)=
(
-
+
-
)=
(
+
-2
),
∴
=
(
+
-2
).
∴
=
+
=
+
(
+
-2
)=
(
+
+
).
| OA |
| OB |
| OD |
| OD |
| 1 |
| 2 |
| OA |
| OB |
(2)∵点M是△ABC三条中线的交点,∴
| CM |
| 2 |
| 3 |
| CD |
| CD |
| 1 |
| 2 |
| CB |
| CA |
| 1 |
| 2 |
| OB |
| OC |
| OA |
| OC |
| 1 |
| 2 |
| OB |
| OA |
| OC |
∴
| CM |
| 1 |
| 3 |
| OA |
| OB |
| OC |
∴
| OM |
| OC |
| CM |
| OC |
| 1 |
| 3 |
| OA |
| OB |
| OC |
| 1 |
| 3 |
| OA |
| OB |
| OC |
点评:本题考查了向量的平行四边形法则与三角形法则,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
过椭圆
+
=1上一点M(0,2)作圆x2+y2=2的两条切线,点A,B为切点,O为坐标原点,则△AOB的面积为( )
| x2 |
| 9 |
| y2 |
| 4 |
A、
| ||
B、
| ||
| C、1 | ||
D、
|
设α∈(0,π),且tanα=
,则cosα=( )
| 5 |
| A、2 | ||||
B、-
| ||||
C、
| ||||
D、
|