题目内容

(1)
1
6
+
5
的值;
(2)
1
n+1
+
n
(n为正整数)的值;
(3)
1
1+
2
+
1
2
+
3
+
1
3
+
4
+…
1
99
+
100
的值.
考点:根式与分数指数幂的互化及其化简运算
专题:计算题,函数的性质及应用
分析:利用分母有理化,把
1
n+1
+
n
化为
n+1
-
n
的形式(n为正整数),即可求出结果.
解答: 解:(1)
1
6
+
5
=
6
-
5
(
6
+
5
)(
6
-
5
)
=
6
-
5
6-5
=
6
-
5

(2)
1
n+1
+
n
=
n+1
-
n
(
n+1
+
n
)(
n+1
-
n
)
=
n+1
-
n
(n+1)-n
=
n+1
-
n
(n为正整数);
(3)
1
1+
2
+
1
2
+
3
+
1
3
+
4
+…
1
99
+
100
=(
2
-1)+(
3
-
2
)+(
4
-
3
)+…+(
100
-
99

=
2
-1+
3
-
2
+
4
-
3
+…+
100
-
99

=
100
-1=9.
点评:本题考查了根式的运算与分母有理化问题,是计算题目.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网