题目内容
20.若函数f(x)是定义在R上的奇函数,但当x>0时,f(x)=$\frac{1}{x+1}$-log2(x+1),则满足4f(x+1)>7的实数x的取值范围是( )| A. | (2,+∞) | B. | (-∞,-1)∪(3,+∞) | C. | (-4,2) | D. | (-∞,-4) |
分析 先求出函数f(x)的解析式,再利用函数的单调性和奇偶性,结合f(-3)=$\frac{7}{4}$,求得x的范围.
解答
解:∵函数f(x)是定义在R上的奇函数,∴f(0)=0.
∵函数f(x)在(0,+∞)上单调递减,故函数f(x)在(-∞,0)上单调递减.
设x<0,则-x>0,∵当x>0时,f(x)=$\frac{1}{x+1}$-log2(x+1),
∴f(-x)=$\frac{1}{1-x}$-log2(1-x)=-f(x),∴f(x)=$\frac{1}{x-1}$+log2(1-x),
故有f(x)=$\left\{\begin{array}{l}{\frac{1}{x+1}{-log}_{2}(x+1),x>0}\\{0,x=0}\\{\frac{1}{x-1}{+log}_{2}(1-x),x<0}\end{array}\right.$,它的单调性示意图如图所示:
故当x>0时,f(x)<1;当 x<0时,f(x)>-1.
∵f(3)=-$\frac{7}{4}$,∴f(-3)=$\frac{7}{4}$,
不等式4f(x+1)>7,即 f(x+1)>$\frac{7}{4}$=f(3),
若x+1>0,f(x+1)>$\frac{7}{4}$ 不可能;
若x+1<0,则x+1<-3,∴x<-4,即实数x的取值范围为(-∞,-4),
故选:D.
点评 本题主要考查函数的单调性和奇偶性的应用,求函数的解析式,解不等式,属于中档题.
练习册系列答案
相关题目
11.设F1(-c,0),F2(c,0)是椭圆C1:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)与双曲线C2有公共焦点F1、F2,(F1、F2分别为左、右焦点),它们在第一象限交于点M,离心率分别为e1和e2,线段MF1的垂直平分线过F2,则$\frac{{{e_2}-{e_1}}}{{{e_1}{e_2}}}$的值为( )
| A. | $2\sqrt{2}$ | B. | $3\sqrt{2}$ | C. | 3 | D. | 2 |
8.已知函数f(x)=$\left\{\begin{array}{l}{2^x},x≤1\\ ln({x-1}),1<x<2\end{array}$,若存在实数a,当x<2时,f(x)≤ax+b恒成立,则实数b的取值范围是( )
| A. | [1,+∞) | B. | [2,+∞) | C. | [3,+∞) | D. | [4,+∞) |
15.已知点(a,b)在圆C:x2+y2=r2(r≠0)的外部,则ax+by=r2与圆C的位置关系是( )
| A. | 相切 | B. | 相离 | C. | 内含 | D. | 相交 |
12.函数f(x)=(kx+4)lnx-x(x>1),若f(x)>0的解集为(s,t),且(s,t)中只有一个整数,则实数k的取值范围为( )
| A. | ($\frac{1}{ln2}$-2,$\frac{1}{ln3}$-$\frac{4}{3}$) | B. | ($\frac{1}{ln2}$-2,$\frac{1}{ln3}$-$\frac{4}{3}$] | C. | ($\frac{1}{ln3}$-$\frac{4}{3}$,$\frac{1}{2ln2}$-1] | D. | ($\frac{1}{ln3}$-$\frac{4}{3}$,$\frac{1}{2ln2}$-1) |
10.一个几何体的三视图如图所示,则这个几何体是( )

| A. | B. | C. | D. |