题目内容
设数列{an}是公比为正数的等比数列,a1=2,a3-a2=12,数列{bn}满足:bn=log3
+log3an.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{bn}的前n项和Sn;
(Ⅲ)数列{cn}满足:cn=
,求证:c1+c2+…+cn<
.
| 3n |
| 2 |
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{bn}的前n项和Sn;
(Ⅲ)数列{cn}满足:cn=
| bn+1-bn | ||
|
| 3 |
| 2 |
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(Ⅰ)设出数列{an}的公比为q,由已知列式求出公比,则数列{an}的通项公式可求;
(Ⅱ)把数列{an}的通项公式代入bn=log3
+log3an,化简后可得数列{bn}是等差数列,利用等差数列的前n项和求得答案;
(Ⅲ)由(Ⅰ)(Ⅱ)有cn=
=
,放缩得到
≤
,利用等比数列求和后证得答案.
(Ⅱ)把数列{an}的通项公式代入bn=log3
| 3n |
| 2 |
(Ⅲ)由(Ⅰ)(Ⅱ)有cn=
| bn+1-bn | ||
|
| 2 |
| 3n-1 |
| 2 |
| 3n-1 |
| 1 |
| 3n-1 |
解答:
(Ⅰ)解:设数列{an}的公比为q,由a1=2,a3-a1=12,
得2q2-2q-12=0,即q2-q-6=0.
解得q=3或q=-2,
∵q>0,
∴q=-2不合舍去,
∴an=2×3n-1;
(Ⅱ)解:由bn=log3
+log3an,得
bn=log3(
×2×3n-1)=log332n-1=2n-1,
∴数列{bn}是首项b1=1,公差d=2的等差数列,
∴Sn=
=n2;
(Ⅲ)证明:由(Ⅰ)(Ⅱ)有cn=
=
,
∵n≥1时,3n-1≥1,
∴3n-1≥2×3n-1,
∴
≤
,
则c1+c2+…+cn=
+
+…+
≤
+
+…+
=
=
(1-
)<
.
∴原不等式成立.
得2q2-2q-12=0,即q2-q-6=0.
解得q=3或q=-2,
∵q>0,
∴q=-2不合舍去,
∴an=2×3n-1;
(Ⅱ)解:由bn=log3
| 3n |
| 2 |
bn=log3(
| 3n |
| 2 |
∴数列{bn}是首项b1=1,公差d=2的等差数列,
∴Sn=
| n(1+2n-1) |
| 2 |
(Ⅲ)证明:由(Ⅰ)(Ⅱ)有cn=
| bn+1-bn | ||
|
| 2 |
| 3n-1 |
∵n≥1时,3n-1≥1,
∴3n-1≥2×3n-1,
∴
| 2 |
| 3n-1 |
| 1 |
| 3n-1 |
则c1+c2+…+cn=
| 2 |
| 3-1 |
| 2 |
| 32-1 |
| 2 |
| 3n-1 |
| 1 |
| 30 |
| 1 |
| 3 |
| 1 |
| 3n-1 |
1-
| ||
1-
|
=
| 3 |
| 2 |
| 1 |
| 3n |
| 3 |
| 2 |
∴原不等式成立.
点评:本题考查了等比数列的通项公式,考查了等差数列和等比数列的前n项和,训练了放缩法证明数列不等式,是中档题.
练习册系列答案
相关题目
已知:log
(x+y+4)<log
(3x-y-2),若x-y<λ恒成立,则λ的取值范围是( )
| 1 |
| 2 |
| 1 |
| 2 |
| A、(-∞,10] |
| B、(-∞,10) |
| C、[10,+∞) |
| D、(3,+∞) |
已知(x2-
)5的展开式中的常数项为T,f(x)是以T为周期的偶函数,且当x∈[0,1]时,f(x)=x,若在区间[-1,3]内,函数g(x)=f(x)-kx-2k有4个零点,则实数k的取值范围是( )
| 1 | ||
|
A、(0,
| ||
B、[0,
| ||
C、(0,
| ||
D、[0,
|