题目内容

设数列{an}是公比为正数的等比数列,a1=2,a3-a2=12,数列{bn}满足:bn=log3
3n
2
+log3an
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{bn}的前n项和Sn
(Ⅲ)数列{cn}满足:cn=
bn+1-bn
3
2
an-1
,求证:c1+c2+…+cn
3
2
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(Ⅰ)设出数列{an}的公比为q,由已知列式求出公比,则数列{an}的通项公式可求;                               
(Ⅱ)把数列{an}的通项公式代入bn=log3
3n
2
+log3an
,化简后可得数列{bn}是等差数列,利用等差数列的前n项和求得答案;                              
(Ⅲ)由(Ⅰ)(Ⅱ)有cn=
bn+1-bn
3
2
an-1
=
2
3n-1
,放缩得到
2
3n-1
1
3n-1
,利用等比数列求和后证得答案.
解答: (Ⅰ)解:设数列{an}的公比为q,由a1=2,a3-a1=12,
得2q2-2q-12=0,即q2-q-6=0.                                    
解得q=3或q=-2,
∵q>0,
∴q=-2不合舍去,
an=2×3n-1;                                 
(Ⅱ)解:由bn=log3
3n
2
+log3an
,得
bn=log3(
3n
2
×2×3n-1)
=log332n-1=2n-1
∴数列{bn}是首项b1=1,公差d=2的等差数列,
Sn=
n(1+2n-1)
2
=n2
;                                                 
(Ⅲ)证明:由(Ⅰ)(Ⅱ)有cn=
bn+1-bn
3
2
an-1
=
2
3n-1

∵n≥1时,3n-1≥1,
∴3n-1≥2×3n-1
2
3n-1
1
3n-1

c1+c2+…+cn=
2
3-1
+
2
32-1
+…
+
2
3n-1
1
30
+
1
3
+…+
1
3n-1
=
1-
1
3n
1-
1
3

=
3
2
(1-
1
3n
)<
3
2

∴原不等式成立.
点评:本题考查了等比数列的通项公式,考查了等差数列和等比数列的前n项和,训练了放缩法证明数列不等式,是中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网