题目内容

连掷两次骰子得到的点数分别为m,n,记
a
=(m,n),
b
=(1,-1),
a
b
的夹角为θ,θ∈(0,
π
2
]的概率为(  )
A、
1
6
B、
7
12
C、
1
12
D、
1
4
考点:几何概型,平面向量数量积的运算
专题:计算题,概率与统计
分析:掷两次骰子分别得到的点数m,n,组成的向量(m,n)个数为36个,与向量(-1,1)的夹角θ∈(0,
π
2
]的这个事件包含的基本事件数须将其满足的条件进行转化,再进行研究.
解答: 解:连掷两次骰子分别得到点数m,n,所组成的向量(m,n)的个数共有36种
由于向量(m,n)与向量(-1,1)的夹角θ∈(0,
π
2
],
∴(m,n)•(-1,1)≥0,即n≥m,
满足m>n的情况如下
当m=2时,n=1;
当m=3时,n=1,2;
当m=4时,n=1,2,3;
当m=5时,n=1,2,3,4;
当m=6时,n=1,2,3,4,5;
共有15种,
∴所求概率为1-
15
21
=
7
12

故选:B.
点评:本题考查等可能事件的概率,考查了概率与向量相结合,以及分类计数的技巧,有一定的综合性.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网