题目内容
13.在直角坐标系xOy中,曲线C的方程为(x-1)2+(y-1)2=2,直线l的倾斜角为45°且经过点P(-1,0).(1)以O为极点,x轴的正半轴为极轴建立极坐标系,求曲线C的极坐标方程;
(2)设直线l与曲线C交于两点A,B,求$\frac{1}{|PA|}$+$\frac{1}{|PB|}$的值.
分析 (1)根据直线方程与极坐标方程的转化,即可求得曲线C的极坐标方程;
(2)求得直线l的参数方程,代入圆的方程,根据韦达定理及焦点弦公式,即可求得$\frac{1}{|PA|}$+$\frac{1}{|PB|}$的值.
解答 解:(1)将x=ρcosθ,y=ρsinθ,代入(x-1)2+(y-1)2=2,
∴曲线C的极坐标方程为ρ=2(cosθ+sinθ)------(5分)
(2)因为直线l的倾斜角为45°且经过点P(-1,0)所以l参数方程为$\left\{\begin{array}{l}{x=1+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$,代入(x-1)2+(y-1)2=2,
化简得t2-3$\sqrt{2}$t+3=0
所以t1+t2=3$\sqrt{2}$,t1t2=3 故$\frac{1}{|PA|}$+$\frac{1}{|PB|}$=$\frac{{t}_{1}+{t}_{2}}{丨{t}_{1}{t}_{2}丨}$=$\sqrt{2}$,
∴$\frac{1}{|PA|}$+$\frac{1}{|PB|}$的值$\sqrt{2}$.------(10分)
点评 本题考查的知识要点:参数方程与直角坐标方程的转化,及直角坐标方程与极坐标方程的转化,一元二次方程根和系数的关系,考查计算能力,属于中档题.
练习册系列答案
相关题目
8.据市场调查,某种商品一年内每件出厂价在7千元的基础上,按月呈f(x)=Asin(ωx+φ)+b(b>0,ω>0,|φ|<$\frac{π}{2}$)的模型波动(x为月份),已知3月份达到最高价9千元,7月份价格最低为5千元,根据以上条件可确定f(x)的解析式为( )
| A. | f(x)=2sin($\frac{π}{4}$x-$\frac{π}{4}$)+7(1≤x≤12,x∈N+) | B. | f(x)=9sin($\frac{π}{4}$x-$\frac{π}{4}$)+7(1≤x≤12,x∈N+) | ||
| C. | f(x)=2$\sqrt{2}$sin$\frac{π}{4}$x+7(1≤x≤12,x∈N+) | D. | f(x)=2sin($\frac{π}{4}$x+$\frac{π}{4}$)+7(1≤x≤12,x∈N+) |
5.已知$\frac{1+cos2α}{sin2α}=\frac{1}{2}$,则tanα=( )
| A. | 2 | B. | 3 | C. | $\frac{1}{2}$ | D. | $\frac{1}{3}$ |