题目内容

18.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),F1、F2为椭圆的左右焦点,过F2斜率为k(k>0)的直线l与椭圆相交于M、N两点,△MF1N的周长为8,离心率为$\frac{1}{2}$.
(1)求椭圆的方程;
(2)若$\overrightarrow{OM}$•$\overrightarrow{ON}$=-$\frac{17}{7}$(O为坐标原点),求|MN|.

分析 (1)由已知求得a,再由离心率求得c,利用隐含条件求得b,则椭圆方程可求;
(2)联立直线方程与椭圆方程,化为关于x得一元二次方程,利用根与系数的关系及$\overrightarrow{OM}$•$\overrightarrow{ON}$=-$\frac{17}{7}$列式求得直线斜率,再由弦长公式求得|MN|.

解答 解:(1)如图,由题意可得,4a=8,得a=2,
又$\frac{c}{a}=\frac{1}{2}$,∴c=1,b2=a2-c2=3.
则椭圆C的方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$;
(2)F2(1,0),设直线l的方程为y=k(x-1),M(x1,y1),N(x2,y2),
联立$\left\{\begin{array}{l}{y=k(x-1)}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,可得(3+4k2)x2-8k2x+4k2-12=0.
∴${x}_{1}+{x}_{2}=\frac{8{k}^{2}}{3+4{k}^{2}},{x}_{1}{x}_{2}=\frac{4{k}^{2}-12}{3+4{k}^{2}}$.
∴$\overrightarrow{OM}$•$\overrightarrow{ON}$=${x}_{1}{x}_{2}+{y}_{1}{y}_{2}=(1+{k}^{2}){x}_{1}{x}_{2}-{k}^{2}({x}_{1}+{x}_{2})+{k}^{2}$=-$\frac{17}{7}$,
即$(1+{k}^{2})•\frac{4{k}^{2}-12}{3+4{k}^{2}}-{k}^{2}•\frac{8{k}^{2}}{3+4{k}^{2}}+{k}^{2}=-\frac{17}{7}$,
解得k=1(k>0).
∴${x}_{1}+{x}_{2}=\frac{8}{7}$,${x}_{1}{x}_{2}=-\frac{8}{7}$.
则|MN|=$\sqrt{2}•\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}=\frac{24}{7}$.

点评 本题考查椭圆的简单性质,考查直线与椭圆位置关系的应用,考查计算能力,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网