题目内容

15.求下列函数定义域:
(1)y=logx-1(3-x)
(2)$y=\sqrt{2sinx+1}+{log_2}(2cosx-1)$.

分析 (1)由对数式的真数大于0,底数大于0且不等于1联立不等式组得答案;
(2)由根式内部的代数式大于等于0,对数式的真数大于0,然后求解三角不等式组得答案.

解答 解:(1)由题意可得:$\left\{\begin{array}{l}{3-x>0}\\{x-1>0}\\{x-1≠1}\end{array}\right.$,
解之得:1<x<3且x≠2,
∴函数的定义域为(1,2)∪(2,3);
(2)由题意可得:$\left\{\begin{array}{l}2sinx+1≥0\\ 2cosx-1>0\end{array}\right.$,即$\left\{\begin{array}{l}sinx≥-\frac{1}{2}\\ cosx>\frac{1}{2}\end{array}\right.$,
也即$\left\{\begin{array}{l}2kπ-\frac{π}{6}≤x≤2kπ+\frac{7π}{6}\\ 2kπ-\frac{π}{3}<x<2kπ+\frac{π}{3}\end{array}\right.k∈Z$,
解之得:$2kπ-\frac{π}{6}≤x<2kπ+\frac{π}{3},k∈Z$.
∴函数的定义域为$\left\{{\left.x\right|2kπ-\frac{π}{6}≤x<2kπ+\frac{π}{3},k∈Z}\right\}$.

点评 本题考查函数的定义域及其求法,考查了三角不等式的解法,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网