题目内容

19.若(x+1)n=xn+…+ax3+bx2+…+1(n∈N*),且a:b=3:1,则n的值为(  )
A.9B.10C.11D.12

分析 x+1)n=xn+…+ax3+bx2+…+1(n∈N*),可得:a=${∁}_{n}^{n-3}$,b=${∁}_{n}^{n-2}$,利用a:b=3:1,及其组合数的计算公式即可得出.

解答 解:(x+1)n=xn+…+ax3+bx2+…+1(n∈N*),
可得:a=${∁}_{n}^{n-3}$,b=${∁}_{n}^{n-2}$,又a:b=3:1,
化为:${∁}_{n}^{3}$:${∁}_{n}^{2}$=3:1,化为n-2=9,解得n=11.
故选:C.

点评 本题考查了二项式定理的通项公式及其组合数的计算公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网