题目内容

已知a=(log54)2,b=log53,c=ln
3
,下列结论正确的是(  )
A、a>c>b
B、a>b>c
C、c>a>b
D、b>a>c
考点:对数值大小的比较
专题:函数的性质及应用
分析:利用基本不等式的性质可得(log54)2=
(log53+log5
16
3
)2
4
>log53•log5
16
3
;利用对数换底公式可得c=ln
3
=
log5
3
log5e
<log53,即可得出.
解答: 解:∵a=(log54)2=
(log53+log5
16
3
)2
4
>log53•log5
16
3
>log53=b,∴a>b;
∵e2>5,∴log5e2>log55=1,
c=ln
3
=
log5
3
log5e
=
log53
log5e2
<log53=b,
∴a>b>c.
故选:B.
点评:本题考查了基本不等式的性质、对数的运算法则及其换底公式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网