题目内容
20.已知F1、F2分别为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,点P为双曲线右支上一点,M为△PF1F2的内心,满足S${\;}_{△MP{F}_{1}}$=S△${\;}_{MP{F}_{2}}$+λS${\;}_{△M{F}_{1}{F}_{2}}$若该双曲线的离心率为3,则λ=$\frac{1}{3}$(注:S${\;}_{△MP{F}_{1}}$、S△${\;}_{MP{F}_{2}}$、S${\;}_{△M{F}_{1}{F}_{2}}$分别为△MPF1、△MPF2、△MF1F2的面积)
分析 设△PF1F2的内切圆的半径r,运用三角形的面积公式和双曲线的定义,以及离心率公式,化简整理即可得到所求值.
解答 解:设△PF1F2的内切圆的半径r,
由满足S${\;}_{△MP{F}_{1}}$=S△${\;}_{MP{F}_{2}}$+λS${\;}_{△M{F}_{1}{F}_{2}}$,可得
$\frac{1}{2}$r•|PF1|=$\frac{1}{2}$r•|PF2|+λ•$\frac{1}{2}$r•|F2F1|,
即为|PF1|=|PF2|+λ•|F2F1|,
即为|PF1|-|PF2|=λ•|F2F1|,
由点P为双曲线右支上一点,
由定义可得2a=λ•2c,
即a=λc,
由e=$\frac{c}{a}$=$\frac{1}{λ}$=3,
解得λ=$\frac{1}{3}$.
故答案为:$\frac{1}{3}$.
点评 本题考查双曲线的定义、方程和性质,考查三角形的面积公式的运用,注意运用定义法解题,以及离心率公式,考查运算能力,属于中档题.
练习册系列答案
相关题目
10.已知抛物线C1:y2=8ax(a>0),直线l倾斜角是45°且过抛物线C1的焦点,直线l被抛物线C1截得的线段长是16,双曲线C2:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的一个焦点在抛物线C1的准线上,则直线l与y轴的交点P到双曲线C2的一条渐近线的距离是( )
| A. | 2 | B. | $\sqrt{3}$ | C. | $\sqrt{2}$ | D. | 1 |
11.设a,b∈R,若a>b,则( )
| A. | $\frac{1}{a}$<$\frac{1}{b}$ | B. | 2a>2b | C. | lga>lgb | D. | sina>sinb |
8.已知x,y满足约束条件$\left\{\begin{array}{l}{x+y-2≤0}\\{x-2y-2≤0}\\{2x-y+2≥0}\end{array}\right.$,若2x+y+k≥0恒成立,则直线2x+y+k=0被圆(x-1)2+(y-2)2=25截得的弦长的最大值为( )
| A. | 10 | B. | 2$\sqrt{5}$ | C. | 4$\sqrt{5}$ | D. | 3$\sqrt{5}$ |
15.已知函数f(x)的图象关于x=-1对称,且f(x)在(-1,+∞)上单调,若数列{an}是公差不为0的等差数列,且f(a50)=f(a51),则{an}的前100项的和为( )
| A. | -200 | B. | -100 | C. | -50 | D. | 0 |
5.已知A为椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上一点,B为点A关于原点的对称点,F为椭圆的左焦点,且AF⊥BF,若∠ABF∈[$\frac{π}{12}$,$\frac{π}{4}$],则该椭圆离心率的取值范围为( )
| A. | [0,$\frac{\sqrt{2}}{2}$] | B. | [$\frac{\sqrt{2}}{2}$,1) | C. | [0,$\frac{\sqrt{6}}{3}$] | D. | [$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{6}}{3}$] |
12.执行如图所示的程序框图,输出的y等于( )

| A. | $\frac{1}{2}$ | B. | 0 | C. | -$\frac{1}{2}$ | D. | 1 |