题目内容
某工厂师徒二人各加工相同型号的零件2个,是否加工出精品均互不影响.已知师傅加工一个零件是精品的概率为
,徒弟加工一个零件是精品的概率为
,师徒二人各加工2个零件.
(1)求徒弟加工该零件的精品数多于师傅的概率.
(2)设师徒二人加工出的4个零件中精品个数为ξ,求ξ的分布列与期望Eξ.
| 2 |
| 3 |
| 1 |
| 2 |
(1)求徒弟加工该零件的精品数多于师傅的概率.
(2)设师徒二人加工出的4个零件中精品个数为ξ,求ξ的分布列与期望Eξ.
考点:离散型随机变量及其分布列,离散型随机变量的期望与方差
专题:概率与统计
分析:(1)设师傅加工出i个精品零件的事件为Ai,徒弟加工出i个精品零件的事件为Bi,(i=0,1,2),则P(A0)=(
)2=
,P(A1)
(
)•
=
,P(B1)=
(
)2=
,P(B2)=(
)2=
,由此能求出徒弟加工该零件的精品数多于师傅的概率.
(2)由题意知ξ的可能取值为0,1,2,3,4,分别求出相应的概率,由此能求出ξ的分布列与期望Eξ.
| 1 |
| 3 |
| 1 |
| 9 |
| =C | 1 2 |
| 1 |
| 3 |
| 2 |
| 3 |
| 4 |
| 9 |
| C | 1 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
(2)由题意知ξ的可能取值为0,1,2,3,4,分别求出相应的概率,由此能求出ξ的分布列与期望Eξ.
解答:
解:(1)设师傅加工出i个精品零件的事件为Ai,
徒弟加工出i个精品零件的事件为Bi,(i=0,1,2),
则P(A0)=(
)2=
,P(A1)
(
)•
=
,
P(B1)=
(
)2=
,P(B2)=(
)2=
,
∴徒弟加工该零件的精品数多于师傅的概率:
p=P(A0B1)+P(A0B2)+P(A1B2)
=
×
+
×
+
×
=
.
(2)由题意知ξ的可能取值为0,1,2,3,4,
P(A2)=(
)2=
,P(B0)=(
)2=
,
P(ξ=0)=
×
=
,
P(ξ=1)=
×
+
×
=
,
P(ξ=2)=
×
+
×
+
×
=
,
P(ξ=3)=
×
+
×
=
,
P(ξ=4)=
×
=
,
∴ξ的分布列为:
∴Eξ=0×
+1×
+2×
+3×
+4×
=
.
徒弟加工出i个精品零件的事件为Bi,(i=0,1,2),
则P(A0)=(
| 1 |
| 3 |
| 1 |
| 9 |
| =C | 1 2 |
| 1 |
| 3 |
| 2 |
| 3 |
| 4 |
| 9 |
P(B1)=
| C | 1 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
∴徒弟加工该零件的精品数多于师傅的概率:
p=P(A0B1)+P(A0B2)+P(A1B2)
=
| 1 |
| 9 |
| 1 |
| 2 |
| 1 |
| 9 |
| 1 |
| 4 |
| 4 |
| 9 |
| 1 |
| 4 |
| 7 |
| 36 |
(2)由题意知ξ的可能取值为0,1,2,3,4,
P(A2)=(
| 2 |
| 3 |
| 4 |
| 9 |
| 1 |
| 2 |
| 1 |
| 4 |
P(ξ=0)=
| 1 |
| 9 |
| 1 |
| 4 |
| 1 |
| 36 |
P(ξ=1)=
| 4 |
| 9 |
| 1 |
| 4 |
| 1 |
| 9 |
| 1 |
| 2 |
| 1 |
| 6 |
P(ξ=2)=
| 4 |
| 9 |
| 1 |
| 2 |
| 4 |
| 9 |
| 1 |
| 4 |
| 1 |
| 9 |
| 1 |
| 4 |
| 13 |
| 36 |
P(ξ=3)=
| 4 |
| 9 |
| 1 |
| 4 |
| 4 |
| 9 |
| 1 |
| 2 |
| 1 |
| 3 |
P(ξ=4)=
| 4 |
| 9 |
| 1 |
| 4 |
| 1 |
| 9 |
∴ξ的分布列为:
| ξ | 0 | 1 | 2 | 3 | 4 | ||||||||||
| P |
|
|
|
|
|
| 1 |
| 36 |
| 1 |
| 6 |
| 13 |
| 36 |
| 1 |
| 3 |
| 1 |
| 9 |
| 7 |
| 3 |
点评:本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,解题时要认真审题,是中档题.
练习册系列答案
相关题目