题目内容
14.已知函数f(x)的部分图象如图所示,则f(x)的解析式可能是( )| A. | f(x)=$\frac{sin2x}{{x}^{2}}$ | B. | f(x)=$\frac{cos2x}{{x}^{2}}$ | C. | f(x)=$\frac{co{s}^{2}x}{2x}$ | D. | f(x)=$\frac{cos2x}{x}$ |
分析 利用函数图象判断奇偶性,排除选项B,取x=π排除A,然后利用x>0时,f(x)的值有正有负排除C,则答案可求.
解答 解:根据函数f(x)的部分图象,可得该函数的图象关于原点对称,故该函数为奇函数,
而B中的函数f(x)=$\frac{cos2x}{{x}^{2}}$为偶函数,故排除B;
再根据当x=π时,f(x)>0,故排除A;
又当x>0时,f(x)的值有正有负,故排除C;
故选:D.
点评 本题考查函数的图象的判断,解析式的对应关系,考查分析问题解决问题的能力,属于中档题.
练习册系列答案
相关题目
8.正方体ABCD-A1B1C1D1中,M,N分别是棱A1D,DD1的中点,则异面直线CM与AN所成角的大小是( )
| A. | 30° | B. | 60° | C. | 90° | D. | 120° |
2.
已知函数y=Asin(ωx+φ)(A>0,ω>0,-π≤φ≤π)一个周期的图象(如图),则这个函数的一个解析式为( )
| A. | y=2sin(3x-$\frac{π}{2}$) | B. | y=2sin(3x-$\frac{π}{6}$) | C. | y=2sin(3x+$\frac{π}{6}$) | D. | y=2sin($\frac{3}{2}$x+$\frac{π}{2}$) |
9.已知函数f(x)=x2+ex-$\frac{1}{2}$(x>0)与g(x)=x2+ln(x+a)的图象上存在关于y轴对称的点,则a的取值范围是( )
| A. | (-$\sqrt{e}$,$\sqrt{e}$) | B. | (-$\sqrt{e}$,+∞) | C. | (-∞,$\sqrt{e}$) | D. | ($\sqrt{e}$,+∞) |
19.为大力提倡“厉行节约,反对浪费”,某市通过随机询问100名性别不同的居民是否能做到“光盘”行动,得到如下的2×2列联表:
表:
经计算K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$参照附表,得到的正确结论是( )
| 做不到“光盘” | 能做到“光盘” | |
| 男 | 45 | 10 |
| 女 | 30 | 15 |
| P(K2≥k) | 0.10 | 0.05 | 0.025 |
| k | 2.706 | 3.841 | 5.024 |
| A. | 在犯错误的概率不超过5%的前提下,认为“该市居民能否做到‘光盘’与性别有关” | |
| B. | 在犯错误的概率不超过2.5%的前提下,认为“该市居民能否做到‘光盘’与性别有关” | |
| C. | 有90%以上的把握认为“该市居民能否做到‘光盘’与性別无关” | |
| D. | 有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关” |
6.已知函数f(x)=$\frac{\sqrt{3}}{2}$sin2x+$\frac{1}{2}$cos2x,若其图象是由y=sin2x的图象向左平移φ(φ>0)个单位得到的,则φ的最小值为( )
| A. | $\frac{π}{12}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
7.已知复数z=$\frac{{{{(a+2i)}^2}}}{i}$,且z对应的点在直线x=4上,则z的虚部为( )
| A. | 3 | B. | 3i | C. | -3 | D. | -3i |