题目内容

10.若三条直线ax+y+3=0,x+y+2=0和2x-y+1=0相交于一点,则行列式$|\begin{array}{l}{a}&{1}\\{1}&{1}\end{array}|$的值为1.

分析 先由三条直线ax+y+3=0,x+y+2=0和2x-y+1=0相交于一点,求出a,再由二阶行列式展开法则能求出$|\begin{array}{l}{a}&{1}\\{1}&{1}\end{array}|$的值.

解答 解:联立$\left\{\begin{array}{l}{x+y+2=0}\\{2x-y+1=0}\end{array}\right.$,得x=-1,y=-1,
∵三条直线ax+y+3=0,x+y+2=0和2x-y+1=0相交于一点,
∴直线ax+y+3=0过点(-1,-1),∴-a-1+3=0,解得a=2,
∴$|\begin{array}{l}{a}&{1}\\{1}&{1}\end{array}|$=a-1=2-1=1.
故答案为:1.

点评 本题考查二阶行列式的值的求法,是基础题,解题时要认真审题,注意二阶行列式展开法则的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网