题目内容

11.设数列{an}满足an+1=an2-an+1(n∈N*),Sn为{an}的前n项和.证明:对任意n∈N*
(I)当0≤a1≤1时,0≤an≤1;
(II)当a1>1时,an>(a1-1)a1n-1
(III)当a1=$\frac{1}{2}$时,n-$\sqrt{2n}$<Sn<n.

分析 (Ⅰ)用数学归纳法能证明当0≤a1≤1时,0≤an≤1.
(Ⅱ)由an+1-an=(${{a}_{n}}^{2}-{a}_{n}+1$)-an=(an-1)2≥0,知an+1≥an.从而$\frac{{a}_{n+1}-1}{{a}_{n}-1}$=an≥a1,由此能证明当a1>1时,an>(a1-1)a1n-1
(Ⅲ)当${a}_{1}=\frac{1}{2}$时,Sn<n,令bn=1-an(n∈N*),则bn>bn+1>0,(n∈N*),由${a}_{n+1}={{a}_{n}}^{2}-{a}_{n}+1$,得${{b}_{n}}^{2}={b}_{n}-{b}_{n+1}$.从而${b}_{n}<\frac{1}{\sqrt{2n}}$,(n∈N*),由此能证明当${a}_{1}=\frac{1}{2}$时,$n-\sqrt{2n}<{S}_{n}<n$.

解答 证明:(Ⅰ)用数学归纳法证明.
①当n=1时,0≤an≤1成立.
②假设当n=k(k∈N*)时,0≤ak≤1,
则当n=k+1时,${a}_{k+1}={{a}_{k}}^{2}-{{a}_{k}+1}^{\;}$=(${a}_{k}-\frac{1}{2}$)2+$\frac{3}{4}$∈[$\frac{3}{4},1$]?[0,1],
由①②知,$0≤{a}_{n}≤1,(n∈{N}^{*})$.
∴当0≤a1≤1时,0≤an≤1.
(Ⅱ)由an+1-an=(${{a}_{n}}^{2}-{a}_{n}+1$)-an=(an-1)2≥0,知an+1≥an
若a1>1,则an>1,(n∈N*),
从而${a}_{n-1}-1=({{a}_{n}}^{2}-{a}_{n}+1)-1$=${{a}_{n}}^{2}$-an=an(an-1),
即$\frac{{a}_{n+1}-1}{{a}_{n}-1}$=an≥a1
∴${a}_{n}-1≥({a}_{1}-1){{a}_{1}}^{n-1}$,
∴当a1>1时,an>(a1-1)a1n-1
(Ⅲ)当${a}_{1}=\frac{1}{2}$时,由(Ⅰ),0<an<1(n∈N*),故Sn<n,
令bn=1-an(n∈N*),由(Ⅰ)(Ⅱ),bn>bn+1>0,(n∈N*),
由${a}_{n+1}={{a}_{n}}^{2}-{a}_{n}+1$,得${{b}_{n}}^{2}={b}_{n}-{b}_{n+1}$.
∴${{b}_{1}}^{2}+{{b}_{2}}^{2}+…+{{b}_{n}}^{2}$=(b1-b2)+(b2-b3)+…+(bn-bn+1)=b1-bn+1<b1=$\frac{1}{2}$,
∵${{b}_{1}}^{2}+{{b}_{2}}^{2}+…+{{b}_{n}}^{2}$≥$n{{b}_{n}}^{2}$,
∴nbn2$<\frac{1}{2}$,即${b}_{n}<\frac{1}{\sqrt{2n}}$,(n∈N*),
∵${b}_{n}<\frac{1}{\sqrt{2n}}$=$\frac{\sqrt{2}}{\sqrt{2}n}<\frac{\sqrt{2}}{\sqrt{n}+\sqrt{n-1}}$=$\sqrt{2}(\sqrt{n}-\sqrt{n-1})$,
∴b1+b2+…+bn$<\sqrt{2}$[($\sqrt{1}-\sqrt{0}$)+($\sqrt{2}-\sqrt{1}$)+…+($\sqrt{n}-\sqrt{n-1}$)]=$\sqrt{2n}$,
即n-Sn$<\sqrt{2n}$,亦即${S}_{n}>n-\sqrt{2n}$,
∴当${a}_{1}=\frac{1}{2}$时,$n-\sqrt{2n}<{S}_{n}<n$.

点评 本题考查数列不等式的证明,是中档题,解题时要认真审题,注意数学归纳法、数列性质、放缩法的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网