题目内容
19.已知等差数列{an}中,Sn为其前n项和,a2+a6=6,S3=5.(I)求数列{an}的通项公式;
(II)令${b_n}=\frac{1}{{{a_{n-1}}{a_n}}}({n≥2}),{b_1}=3,{T_n}={b_1}+{b_2}+…+{b_n}$,若Tn<m对一切n∈N*都成立,求m的最小值.
分析 (Ⅰ) 设等差数列{an}的公差为d,根据题意可得$\left\{{\begin{array}{l}{2{a_1}+6d=6}\\{3{a_1}+3d=5}\end{array}}\right.$,解得即可,
(Ⅱ)根据裂项求和即可得到Sn=b1+b2+…+bn=$\frac{9}{2}$(1-$\frac{1}{2n+1}$),即可求出m的值.
解答 解:(Ⅰ) 设等差数列{an}的公差为d,
由a2+a6=6,S3=5得$\left\{{\begin{array}{l}{2{a_1}+6d=6}\\{3{a_1}+3d=5}\end{array}}\right.$,
解得a1=1,d=$\frac{2}{3}$,
∴an=$\frac{2}{3}$n+$\frac{1}{3}$.
(Ⅱ)当n≥2时,bn=$\frac{1}{{a}_{n}{a}_{n-1}}$=$\frac{1}{(\frac{2}{3}n+\frac{1}{3})(\frac{2}{3}n-\frac{1}{3})}$=$\frac{9}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$)
当n=1时,上式同样成立,
∴Sn=b1+b2+…+bn
=$\frac{9}{2}$(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{2n-1}$-$\frac{1}{2n+1}$)=$\frac{9}{2}$(1-$\frac{1}{2n+1}$),
又$\frac{9}{2}$(1-$\frac{1}{2n+1}$)随n递增,且$\frac{9}{2}$(1-$\frac{1}{2n+1}$)<$\frac{9}{2}$•1≤m,
又m∈N*,∴m≥5,
∴m的最小值为5
点评 本题考查数列的通项公式的求法,考查满足条件的最小正整数的求法,是中档题,解题时要认真审题,注意裂项求和法的合理运用.
| A. | 150°或30° | B. | 120°或60° | C. | 30° | D. | 60° |
| A. | 90°的内角 | B. | 60°的内角 | C. | 45°的内角 | D. | 30°的内角 |
| A. | (-∞,0] | B. | (-∞,1] | C. | (0,1) | D. | (1,+∞) |
| A. | 1 | B. | -1 | C. | e | D. | $\frac{1}{e}$ |
| A. | {-1,0,1,2} | B. | {-1,0,1} | C. | {-2,-1,0,1} | D. | {-2,-1,0,1,2} |