题目内容

20.某新建公司规定,招聘的职工须参加不小于80小时的某种技能培训才能上班.公司人事部门在招聘的职工中随机抽取200名参加这种技能培训的数据,按时间段[75,80),[80,85),[85,90),[90,95),[95,100](单位:小时)进行统计,其频率分布直方图如图所示.
(Ⅰ)求抽取的200名职工中,参加这种技能培训服务时间不少于90小时的人数,并估计从招聘职工中任意选取一人,其参加这种技能培训时间不少于90小时的概率;
(Ⅱ)从招聘职工(人数很多)中任意选取3人,记X为这3名职工中参加这种技能培训时间不少于90小时的人数.试求X的分布列和数学期望E(X)和方差D(X).

分析 (Ⅰ)依题意,参加这种技能培训时间在时间段[90,95)小时的职工人数为60,在时间段[95,100)小时的职工人数为20,由此能求出从招聘职工中任意选取一人,其参加这种技能培训时间不少于90小时的概率.
(Ⅱ)依题意,随机变量X的可能取值为0,1,2,3,分别求出相应的概率,由此能求出随机变量X的分布列、数学期望与方差.

解答 解:(Ⅰ)依题意,参加这种技能培训时间在时间段[90,95)小时的职工人数为:200×0.06×5=60,
在时间段[95,100)小时的职工人数为200×0.02×5=20,
∴抽取的200位职工中,参加这种技能培训时间不少于90小时的职工人数为80,
∴从招聘职工中任意选取一人,其参加这种技能培训时间不少于90小时的概率估计为:
p=$\frac{60+20}{200}$=$\frac{2}{5}$.
(Ⅱ)依题意,随机变量X的可能取值为0,1,2,3,
P(X=0)=${C}_{3}^{0}(\frac{3}{5})^{3}$=$\frac{27}{125}$,
P(X=1)=${C}_{3}^{1}(\frac{2}{5})(\frac{3}{5})^{2}$=$\frac{54}{125}$,
P(X=2)=${C}_{3}^{2}(\frac{2}{5})^{2}(\frac{3}{5})$=$\frac{36}{125}$,
P(X=3)=${C}_{3}^{3}(\frac{2}{5})^{3}=\frac{8}{125}$,
∴随机变量X的分布列为:

 X 0 1 2 3
 P $\frac{27}{125}$ $\frac{54}{125}$ $\frac{36}{125}$ $\frac{8}{125}$
∵X~B(3,$\frac{2}{5}$),EX=$3×\frac{2}{5}$=$\frac{6}{5}$,DX=3×$\frac{2}{5}×\frac{3}{5}$=$\frac{18}{25}$.

点评 本题考查概率的求法,考查离散型随机变量的分布列、数学期望、方差的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网