题目内容
10.已知函数$f(x)=\left\{\begin{array}{l}{2^x},x>0\\ x,x≤0\end{array}\right.$,f(1)+f(-1)=1.分析 利用函数性质分别求出f(1),f(-1),由此能求出f(1)+f(-1).
解答 解:∵函数$f(x)=\left\{\begin{array}{l}{2^x},x>0\\ x,x≤0\end{array}\right.$,
∴f(1)=2,f(-1)=-1,
∴f(1)+f(-1)=2-1=1.
故答案为:1.
点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
练习册系列答案
相关题目
20.已知角θ的顶点与原点重合,始边与x轴正半轴重合,终边过点P(-1,2),则tan2θ=( )
| A. | $\frac{4}{3}$ | B. | $\frac{4}{5}$ | C. | $-\frac{4}{5}$ | D. | $-\frac{4}{3}$ |
18.若f(x)=$\frac{e^x}{x}$,f'(x)为f(x)的导函数,则f'(x)=( )
| A. | f'(x)=$-\frac{e^x}{x}$ | B. | f'(x)=$\frac{{x{e^x}-{e^x}}}{x^2}$ | C. | f'(x)=$\frac{{x{e^x}+{e^x}}}{x^2}$ | D. | f'(x)=$\frac{{x{e^x}-{e^x}}}{x}$ |