题目内容

16.已知:在三棱锥P-ABQ 中,D,C,E,F分别是AQ,BQ,AP,BP的中点,PD与EQ交于点G,PC与FQ交于点H,连接GH,则多面体ADGE-BCHF的体积与三棱锥P-ABQ体积之比是$\frac{11}{18}$.

分析 由题意可得GH∥EF,且GH:EF=2:3,设出三棱锥P-ABQ体积为V,可得VP-DCQ=$\frac{1}{4}V$,${V}_{P-QEF}=\frac{1}{4}V$,${V}_{P-EGHF}=\frac{5}{9}{V}_{P-EFQ}$=$\frac{5}{36}V$,作差求出多面体ADGE-BCHF的体积,则答案可求.

解答 解:∵D,C,E,F分别是AQ,BQ,AP,BP的中点,
∴EF∥AB,DC∥AB,则EF∥DC,
又EF?平面PCD,DC?平面PCD,∴EF∥平面PCD,
又EF?平面EFQ,平面EFQ∩平面PCD=GH,∴EF∥GH,
设三棱锥P-ABQ体积为V,则VP-DCQ=$\frac{1}{4}V$,${V}_{P-QEF}=\frac{1}{4}V$,
${V}_{P-EGHF}=\frac{5}{9}{V}_{P-EFQ}$=$\frac{5}{36}V$.
∴${V}_{ADGE-BCHF}=V-\frac{1}{4}V-\frac{5}{36}V$=$\frac{11}{18}V$.
∴多面体ADGE-BCHF的体积与三棱锥P-ABQ体积之比是$\frac{11}{18}$.
故答案为:$\frac{11}{18}$.

点评 本题考查棱柱、棱锥、棱台的体积,考查空间想象能力和思维能力,属中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网