题目内容

10.已知θ∈(0,2π)且$cos\frac{θ}{2}=\frac{1}{3}$,则tanθ的值为-$\frac{4\sqrt{2}}{7}$.

分析 由题意和同角三角函数基本关系可得tan$\frac{θ}{2}$,再由二倍角的正切公式可得.

解答 解:∵θ∈(0,2π),∴$\frac{θ}{2}$∈(0,π),
又∵$cos\frac{θ}{2}=\frac{1}{3}$,∴sin$\frac{θ}{2}$=$\sqrt{1-co{s}^{2}\frac{θ}{2}}$=$\frac{2\sqrt{2}}{3}$,
∴tan$\frac{θ}{2}$=$\frac{sin\frac{θ}{2}}{cos\frac{θ}{2}}$=2$\sqrt{2}$,
∴tanθ=$\frac{2tan\frac{θ}{2}}{1-ta{n}^{2}\frac{θ}{2}}$=-$\frac{4\sqrt{2}}{7}$
故答案为:-$\frac{4\sqrt{2}}{7}$

点评 本题考查二倍角的正切公式,涉及同角三角函数基本关系,属基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网