题目内容
10.向边长分别为5,5,6的三角形区域内随机投一点M,则该点M与三角形三个顶点距离都大于1的概率为1-$\frac{π}{24}$.分析 分别求出对应事件对应的面积,利用几何概型的概率公式即可得到结论
解答
解:如图,∵三角形的三边长分别是5,5,6,
∴三角形的高AD=4,
∴三角形ABC的面积S=$\frac{1}{2}×6×4$=12,
该点距离三角形的三个顶点的距离均大于1,对应的区域为图中阴影部分,
三个小扇形的面积之和为一个整圆的面积的$\frac{1}{2}$,圆的半径为1,
则阴影部分的面积为S1=12-$\frac{1}{2}π$,
则根据几何概型的概率公式可得所求是概率为1-$\frac{π}{24}$.
故答案为:1-$\frac{π}{24}$.
点评 本题主要考查几何概型的概率计算,根据条件求出相应的面积是解决本题的关键.
练习册系列答案
相关题目
1.执行如图程序中,若输出y的值为1,则输入x的值为( )

| A. | 0 | B. | 1 | C. | 0或1 | D. | -1,0或1 |
18.若$sin(\frac{π}{3}+α)=\frac{1}{3}$,则$cos(\frac{π}{3}-2α)$=( )
| A. | $\frac{7}{9}$ | B. | $\frac{1}{3}$ | C. | -$\frac{7}{9}$ | D. | $-\frac{1}{3}$ |
5.命题:“?x∈R,sinx≤1”的否定是( )
| A. | ?x∈R,sinx>1 | B. | ?x∈R,sinx≤1 | C. | ?x∈R,sinx>1 | D. | ?x∈R,sinx≥1 |
15.过点A(2,1)和点B(m,3)的直线斜率为2,则m等于( )
| A. | -1 | B. | 3 | C. | $\frac{1}{2}$ | D. | $\frac{1}{3}$ |
2.已知直线l:kx+y-3=0与圆x2+y2=3交于两点A,B且△OAB为等边三角形(O为坐标原点),则k=( )
| A. | 3 | B. | ±3 | C. | $\sqrt{3}$ | D. | $±\sqrt{3}$ |
19.一质点做直线运动,由始点经过t秒后的距离为s=t3-t2+2t,则t=2秒时的瞬时速度为( )
| A. | 8m/s | B. | 10m/s | C. | 16m/s | D. | 18m/s |