题目内容
20.曲线y=$\frac{1}{2}$x2-2x在点(1,-$\frac{3}{2}$)处切线的倾斜角为$\frac{3π}{4}$.分析 求出函数的导数,求得切线的斜率,由直线的斜率公式k=tanθ,计算即可得到所求值.
解答 解:y=$\frac{1}{2}$x2-2x的导数为y′=x-2,
由导数的几何意义可得,
在点(1,-$\frac{3}{2}$)处切线的斜率为k=-1,
即有tanθ=-1,(θ∈[0,π)),
可得θ=$\frac{3π}{4}$.
故答案为:$\frac{3π}{4}$.
点评 本题考查导数的运用:求切线的斜率,考查导数的几何意义:函数在某点处的导数即为曲线在该点处的切线的斜率,考查直线的斜率公式的运用,属于基础题.
练习册系列答案
相关题目
10.2015年9月3日,抗战胜利70周年纪念活动在北京隆重举行,受到全国人民的瞩目.纪念活动包括举行纪念大会、阅兵式、招待会和文艺晚会等,据统计,抗战老兵由于身体原因,参加纪念大会、阅兵式、招待会这三个环节(可参加多个,也可都不参加)的情况及其概率如表所示:
(Ⅰ)若m=2n,则从这60名抗战老兵中按照参加纪念活动的环节数分层抽取6人进行座谈,求参加纪念活动环节数为2的抗战老兵中抽取的人数;
(Ⅱ)某医疗部门决定从(1)中抽取的6名抗战老兵中随机抽取2名进行体检,求这2名抗战老兵中至少有1人参加纪念活动的环节数为3的概率.
| 参加纪念活动的环节数 | 0 | 1 | 2 | 3 |
| 概率 | $\frac{1}{6}$ | m | n | $\frac{1}{3}$ |
(Ⅱ)某医疗部门决定从(1)中抽取的6名抗战老兵中随机抽取2名进行体检,求这2名抗战老兵中至少有1人参加纪念活动的环节数为3的概率.
11.一个圆内有一个内接等边三角形,一动点在圆内运动,则此点落在等边三角形内部的概率为( )
| A. | $\frac{3}{π}$ | B. | $\frac{{3\sqrt{3}}}{4π}$ | C. | $\frac{{\sqrt{3}}}{4π}$ | D. | $\frac{{2\sqrt{3}}}{3π}$ |
5.同时抛掷两枚骰子,向上点数之和为5的概率是( )
| A. | $\frac{1}{9}$ | B. | $\frac{2}{21}$ | C. | $\frac{1}{18}$ | D. | $\frac{1}{6}$ |