题目内容
1.若直线y=x-2过双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-y2=1(a>0)的焦点,则此双曲线C的渐近线方程为( )| A. | y=±$\frac{\sqrt{3}}{3}$x | B. | y=$±\sqrt{3}$x | C. | y=±$\frac{1}{3}$x | D. | y=±$\frac{\sqrt{5}}{5}$x |
分析 根据直线过双曲线的焦点,则函数的零点的横坐标即是c,求出a的值,结合渐近线的方程进行求解即可.
解答 解:由双曲线的方程得c=$\sqrt{{a}^{2}+1}$,
当y=0时,由y=x-2=0得x=2,
即c=$\sqrt{{a}^{2}+1}$=2,则a2=3,则a=$\sqrt{3}$,
即双曲线的方程为$\frac{{x}^{2}}{3}-{y}^{2}=1$,
则双曲线的渐近线方程为y=±$\frac{\sqrt{3}}{3}$x,
故选:A
点评 本题主要考查双曲线的方程和性质,根据条件求出c以及a,结合渐近线的方程是解决本题的关键.
练习册系列答案
相关题目
12.双曲线x2-$\frac{{y}^{2}}{4}$=1的渐近线方程为( )
| A. | y=±4x | B. | y=±2x | C. | y=±$\frac{1}{2}x$ | D. | y=±$\frac{1}{4}$x |
9.设双曲线$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)与抛物线y2=8x交于两点A,B,且|AB|=8,则该双曲线的焦点到其渐近线的距离为( )
| A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | 4 | D. | $\frac{\sqrt{6}}{3}$ |
16.已知双曲线C:$\frac{{y}^{2}}{2}$-$\frac{{x}^{2}}{b}$=1(b>0)的离心率为2,则C上任意一点到两条渐近线的距离之积为( )
| A. | $\sqrt{2}$ | B. | $\frac{3}{2}$ | C. | 2 | D. | 3 |
6.过双曲线x2-$\frac{y^2}{15}$=1的右支上一点P,分别向圆C1:(x+4)2+y2=4和圆C2:(x-4)2+y2=1作切线,切点分别为M,N,则|PM|2-|PN|2的最小值为( )
| A. | 10 | B. | 13 | C. | 16 | D. | 19 |
13.下列说法中正确的是( )
| A. | “f(0)=0”是“函数f(x)是奇函数”的充要条件 | |
| B. | “若$α=\frac{π}{6}$,则$sinα=\frac{1}{2}$”的否命题是“若$α≠\frac{π}{6}$,则$sinα≠\frac{1}{2}$ | |
| C. | 若$p:?{x_0}∈R,x_0^2-{x_0}-1>0$,则¬p:?x∈R,x2-x-1<0 | |
| D. | 若p∧q为假命题,则p,q均为假命题 |
10.已知定义在R上的函数f(x)满足f(x-1)=f(1-x),且x≥0时,f(x)=2|x-m|-2,f(-1)=-1,则f(x)<0的解集为( )
| A. | (-∞,-2)∪(2,+∞) | B. | (-2,2) | C. | (0,2) | D. | (-2,0)∪(0,2) |