题目内容
16.| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
分析 经过点E作EH⊥AD,垂足为H,可得EH⊥平面ABCD,利用三棱锥条件计算公式可得:VC-ABE=$\frac{2}{3}EH$≥1,即EH$≥\frac{3}{2}$,又PA=3,可得$\frac{PE}{ED}$=m≤1,即可判断出结论.
解答 解:经过点E作EH⊥AD,垂足为H,
∵PA⊥底面ABCD,∴平面PAD⊥平面ABCD.
则EH⊥平面ABCD,
∵VC-ABE=VE-ABC,![]()
∴VC-ABE=$\frac{1}{3}×{S}_{△ABC}×EH$=$\frac{1}{3}×\frac{1}{2}×2×2$×EH=$\frac{2}{3}EH$≥1,
则EH$≥\frac{3}{2}$,
又PA=3,$\frac{EH}{PA}=\frac{ED}{PD}$,∴$\frac{3-EH}{EH}=\frac{PE}{ED}$,∴$\frac{PE}{ED}$=m≤2-1=1,
∴“0<m<2”是三棱锥C-ABE的体积不小于1的必要不充分条件.
故选:B.
点评 本题考查了空间位置关系的判定、体积的计算、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
1.函数f(x)=$\left\{\begin{array}{l}{{x}^{3},x≤0}\\{lg(x+1),x>0}\end{array}\right.$若f(2x)>f(x2-3),则实数x的取值范围是( )
| A. | (-1,3) | B. | (-∞,-1)∪(3,+∞) | C. | (-∞,-3)∪(1,+∞) | D. | (-3,1) |