题目内容
10.若函数f(x)=$\left\{\begin{array}{l}{{a}^{x},x≥1}\\{(4-\frac{a}{2})x+2,x<1}\end{array}\right.$且满足对任意的实数x1≠x2都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0成立,则实数a的取值范围是( )| A. | (1,+∞) | B. | (1,8) | C. | (4,8) | D. | [4,8) |
分析 若对任意的实数x1≠x2都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0成立,则函数f(x)=$\left\{\begin{array}{l}{{a}^{x},x≥1}\\{(4-\frac{a}{2})x+2,x<1}\end{array}\right.$在R上单调递增,进而可得答案.
解答 解:∵对任意的实数x1≠x2都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0成立,
∴函数f(x)=$\left\{\begin{array}{l}{{a}^{x},x≥1}\\{(4-\frac{a}{2})x+2,x<1}\end{array}\right.$在R上单调递增,
∴$\left\{\begin{array}{l}a>1\\ 4-\frac{a}{2}>0\\ a≥4-\frac{a}{2}+2\end{array}\right.$,
解得:a∈[4,8),
故选:D
点评 本题考查的知识点是分段函数的应用,正确理解分段函数的单调性,是解答的关键.
练习册系列答案
相关题目
5.方程log2x+x=3的解所在区间是( )
| A. | (0,1) | B. | (1,2) | C. | (3,+∞) | D. | [2,3) |
20.已知三条直线a、b、c和平面α,下列结论正确的是( )
| A. | 若a∥α,b∥α,则a∥b | B. | 若a⊥c,b⊥c,则a∥b | C. | 若a?α,b∥α,则a∥b | D. | a⊥α,b⊥α,则a∥b |