题目内容

2.已知点P为线段y=2x,x∈[2,4]上任意一点,点Q为圆C:(x-3)2+(y+2)2=1上一动点,则线段|PQ|的最小值为$\sqrt{37}$-1.

分析 用参数法,设出点P(x,2x),x∈[2,4],求出点P到圆心C的距离|PC|,计算|PC|的最小值即可得出结论.

解答 解:设点P(x,2x),x∈[2,4],
则点P到圆C:(x-3)2+(y+2)2=1的圆心距离是:
|PC|=$\sqrt{(x-3)^{2}+(2x+2)^{2}}$=$\sqrt{5{x}^{2}+2x+13}$,
设f(x)=5x2+2x+13,x∈[2,4],
则f(x)是单调增函数,且f(x)≥f(2)=37,
所以|PC|≥$\sqrt{37}$,
所以线段|PQ|的最小值为$\sqrt{37}$-1.
故答案为:$\sqrt{37}$-1.

点评 本题考查了两点间的距离公式与应用问题,也考查了求函数在闭区间上的最值问题,是基础题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网