题目内容
20.函数$f(x)=sin(4x+\frac{π}{6})$的最小正周期为$\frac{π}{2}$.分析 直接利用周期公式求解即可.
解答 解:函数$f(x)=sin(4x+\frac{π}{6})$,
∴f(x)的最小正周期T=$\frac{2π}{4}=\frac{π}{2}$.
故答案为$\frac{π}{2}$.
点评 本题给出正弦型三角函数的周期的计算.比较基础.
练习册系列答案
相关题目
10.设a,b∈R,若a>b,则( )
| A. | $\frac{1}{a}<\frac{1}{b}$ | B. | lga>lgb | C. | 2a>2b | D. | a2>b2 |
11.棉花的纤维长度是评价棉花质量的重要指标,某农科所的专家在土壤环境不同的甲、乙两块实验地分别种植某品种的棉花,为了评价该品种的棉花质量,在棉花成熟后,分别从甲、乙两地的棉花中各随机抽取20根棉花纤维进行统计,结果如下表:(记纤维长度不低于300mm的为“长纤维”,其余为“短纤维”)
(1)由以上统计数据,填写下面2×2列联表,并判断能否在犯错误概率不超过0.025的前提下认为“纤维长度与土壤环境有关系”.
附:(1)${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$;
(2)临界值表;
(2)现从上述40根纤维中,按纤维长度是否为“长纤维”还是“短纤维”采用分层抽样的方法抽取8根进行检
测,在这8根纤维中,记乙地“短
纤维”的根数为X,求X的分布列及数学期望.
| 纤维长度 | (0,100) | [100,200) | [200,300) | [300,400) | [400,500] |
| 甲地(根数) | 3 | 4 | 4 | 5 | 4 |
| 乙地(根数) | 1 | 1 | 2 | 10 | 6 |
| 甲地 | 乙地 | 总计 | |
| 长纤维 | 9 | 16 | 25 |
| 短纤维 | 11 | 4 | 15 |
| 总计 | 20 | 20 | 40 |
(2)临界值表;
| P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
测,在这8根纤维中,记乙地“短
纤维”的根数为X,求X的分布列及数学期望.
8.设F1,F2是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两个焦点,点F1到双曲线渐近线的距离为$\frac{\sqrt{2}}{2}$|OF1|(O为坐标原点),则该双曲线的离心率为( )
| A. | $\frac{\sqrt{2}}{2}$ | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
15.若复数z满足$2z+z•\overline z={({2-i})^2}$(i为虚数单位),则z为( )
| A. | -1-2i | B. | -1-i | C. | -1+2i | D. | 1-2i |
10.设集合A={x|x<1或x>2},B={x|3x-4>0},则A∩B=( )
| A. | (-$\frac{4}{3}$,1) | B. | ($\frac{4}{3}$,2) | C. | (1,$\frac{4}{3}$) | D. | (2,+∞) |