题目内容

3.若△ABC的内角A,B,C的对边分别为a,b,c,已知2bsin2A=asinB,且c=2b,则$\frac{a}{b}$=(  )
A.2B.3C.$\sqrt{2}$D.$\sqrt{3}$

分析 利用正弦定理化简已知等式,结合sinA≠0,sinB≠0,可得cosA=$\frac{1}{4}$,又c=2b,利用余弦定理即可计算得解$\frac{a}{b}$的值

解答 解:由2bsin2A=asinB,利用正弦定理可得:4sinBsinAcosA=sinAsinB,
由于:sinA≠0,sinB≠0,
可得:cosA=$\frac{1}{4}$,
又c=2b,
可得:a2=b2+c2-2bccosA=b2+4b2-2b•2b•$\frac{1}{4}$=4b2
则$\frac{a}{b}$=2.
故选:A.

点评 本题主要考查了正弦定理,余弦定理在解三角形中的综合应用,考查了转化思想,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网