题目内容

数列{bn}前n项和为Sn,且满足Sn=
3
2
bn-n (n∈N*)
,若数列{an}满足a1=1,an=bn(
1
b1
+
1
b2
+…
1
bn-1
) (n≥2,n∈N*)

(1)求b1,b2及bn
(2)证明
an+1
an+1
=
bn
bn+1
(n≥2,n∈N*)

(3)求证:(1+
1
a1
)(1+
1
a2
)…(1+
1
an
)<3(n∈N*)
考点:数列与不等式的综合
专题:综合题,等差数列与等比数列
分析:(1)由Sn=
3
2
bn-n,得Sn-1=
3
2
bn-1-(n-1),n≥2,n∈N*,所以bn=3bn-1+2,由此可知bn=3n-1;
(2)由条件可得
an
bn
=
1
b1
+
1
b2
+…
1
bn-1
①,
an+1
bn+1
=
1
b1
+
1
b2
+…+
1
bn-1
+
1
bn
②,②-①即可得出结论;
(3)左边=4(
1
b1
+
1
b2
+…+
1
bn-1
+
1
bn
),再利用放缩法,即可证明.
解答: (1)解:因为Sn=
3
2
bn-n,所以Sn-1=
3
2
bn-1-(n-1),n≥2,n∈N*
两式相减得bn=3bn-1+2
所以bn+1=3(bn-1+1),n≥2,n∈N*
因为S1=
3
2
b1-1,所以b1=2,b2=8.
又因为b1+1=3,所以{bn+1}是首项为3,公比为3的等比数列
所以bn+1=3n,所以bn=3n-1.
(2)证明:
an
bn
=
1
b1
+
1
b2
+…
1
bn-1
①,
an+1
bn+1
=
1
b1
+
1
b2
+…+
1
bn-1
+
1
bn
②,
②-①得
an+1
bn+1
-
an
bn
=
1
bn
,∴
an+1
bn-1
=
an+1
bn
,∴
an+1
an+1
=
bn
bn+1
(n≥2,n∈N*)

(3)证明:左边=
a1+1
a1
a2+1
a2
•…•
an+1
an
=
a1+1
a1a2
b2
b3
•…•
bn
bn+1
•an+1
=
a1+1
a1
b2
a2
•…•
an+1
bn+1
=4(
1
b1
+
1
b2
+…+
1
bn-1
+
1
bn
),
1
3n-1
3n+1
(3n-1)(3n+1-1)
=
3
2
1
3n-1
-
1
3n+1-1

1
b1
+
1
b2
+…+
1
bn-1
+
1
bn
=
1
2
+
1
8
+…+
1
3n-1
3
2
1
2
-
1
3n+1-1
)<
3
4

(1+
1
a1
)(1+
1
a2
)…(1+
1
an
)<3(n∈N*)
点评:本题考查数列知识的综合运用和不等式的证明,考查学生分析解决问题的能力,解题时要认真审题,仔细解答.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网