题目内容
数列{bn}前n项和为Sn,且满足Sn=
bn-n (n∈N*),若数列{an}满足a1=1,an=bn(
+
+…
) (n≥2,n∈N*)
(1)求b1,b2及bn;
(2)证明
=
(n≥2,n∈N*);
(3)求证:(1+
)(1+
)…(1+
)<3(n∈N*).
| 3 |
| 2 |
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn-1 |
(1)求b1,b2及bn;
(2)证明
| an+1 |
| an+1 |
| bn |
| bn+1 |
(3)求证:(1+
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
考点:数列与不等式的综合
专题:综合题,等差数列与等比数列
分析:(1)由Sn=
bn-n,得Sn-1=
bn-1-(n-1),n≥2,n∈N*,所以bn=3bn-1+2,由此可知bn=3n-1;
(2)由条件可得
=
+
+…
①,
=
+
+…+
+
②,②-①即可得出结论;
(3)左边=4(
+
+…+
+
),再利用放缩法,即可证明.
| 3 |
| 2 |
| 3 |
| 2 |
(2)由条件可得
| an |
| bn |
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn-1 |
| an+1 |
| bn+1 |
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn-1 |
| 1 |
| bn |
(3)左边=4(
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn-1 |
| 1 |
| bn |
解答:
(1)解:因为Sn=
bn-n,所以Sn-1=
bn-1-(n-1),n≥2,n∈N*
两式相减得bn=3bn-1+2
所以bn+1=3(bn-1+1),n≥2,n∈N*
因为S1=
b1-1,所以b1=2,b2=8.
又因为b1+1=3,所以{bn+1}是首项为3,公比为3的等比数列
所以bn+1=3n,所以bn=3n-1.
(2)证明:
=
+
+…
①,
=
+
+…+
+
②,
②-①得
-
=
,∴
=
,∴
=
(n≥2,n∈N*);
(3)证明:左边=
•
•…•
=
•
•…•
•an+1
=
•
•…•
=4(
+
+…+
+
),
∵
<
=
(
-
)
∴
+
+…+
+
=
+
+…+
<
(
-
)<
,
∴(1+
)(1+
)…(1+
)<3(n∈N*).
| 3 |
| 2 |
| 3 |
| 2 |
两式相减得bn=3bn-1+2
所以bn+1=3(bn-1+1),n≥2,n∈N*
因为S1=
| 3 |
| 2 |
又因为b1+1=3,所以{bn+1}是首项为3,公比为3的等比数列
所以bn+1=3n,所以bn=3n-1.
(2)证明:
| an |
| bn |
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn-1 |
| an+1 |
| bn+1 |
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn-1 |
| 1 |
| bn |
②-①得
| an+1 |
| bn+1 |
| an |
| bn |
| 1 |
| bn |
| an+1 |
| bn-1 |
| an+1 |
| bn |
| an+1 |
| an+1 |
| bn |
| bn+1 |
(3)证明:左边=
| a1+1 |
| a1 |
| a2+1 |
| a2 |
| an+1 |
| an |
| a1+1 |
| a1a2 |
| b2 |
| b3 |
| bn |
| bn+1 |
=
| a1+1 |
| a1 |
| b2 |
| a2 |
| an+1 |
| bn+1 |
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn-1 |
| 1 |
| bn |
∵
| 1 |
| 3n-1 |
| 3n+1 |
| (3n-1)(3n+1-1) |
| 3 |
| 2 |
| 1 |
| 3n-1 |
| 1 |
| 3n+1-1 |
∴
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn-1 |
| 1 |
| bn |
| 1 |
| 2 |
| 1 |
| 8 |
| 1 |
| 3n-1 |
| 3 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3n+1-1 |
| 3 |
| 4 |
∴(1+
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
点评:本题考查数列知识的综合运用和不等式的证明,考查学生分析解决问题的能力,解题时要认真审题,仔细解答.
练习册系列答案
相关题目