题目内容

14.已知边长为2的正方形ABCD的四个顶点在球O的球面上,球O的体积为V=$\frac{160\sqrt{5}π}{3}$,则OA与平面ABCD所成的角的余弦值为(  )
A.$\frac{\sqrt{10}}{10}$B.$\frac{\sqrt{10}}{5}$C.$\frac{\sqrt{5}}{5}$D.$\frac{2\sqrt{5}}{5}$

分析 过球心O作平面ABCD的垂线OG,则G为正方形中心,∠OAG为OA与平面ABCD所成的角,求出球的半径OA,再求出AG,即可得出所求角的余弦值.

解答 解:如图,

设球O的半径为R,由V=$\frac{4}{3}π{R}^{3}$=$\frac{160\sqrt{5}π}{3}$,
得${R}^{3}=\sqrt{8000}$,∴R=$2\sqrt{5}$,即OA=$2\sqrt{5}$.
设正方形ABCD的中心为G,连接OG,则OG⊥平面ABCD,
且AG=$\frac{1}{2}AC=\frac{1}{2}×2\sqrt{2}=\sqrt{2}$.
∴OA与平面ABCD所成的角的余弦值为$\frac{AG}{OA}=\frac{\sqrt{2}}{2\sqrt{5}}=\frac{\sqrt{10}}{10}$.
故选:A.

点评 本题考查了线面角的计算,球的结构特征,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网