题目内容

9.求和:Sn=$\frac{1}{2}$+$\frac{3}{{2}^{2}}$+$\frac{5}{{2}^{3}}$+$\frac{7}{{2}^{4}}$+…+$\frac{2n-1}{{2}^{n}}$.

分析 利用“错位相减法”与等比数列的前n项和公式即可得出.

解答 解:Sn=$\frac{1}{2}$+$\frac{3}{{2}^{2}}$+$\frac{5}{{2}^{3}}$+$\frac{7}{{2}^{4}}$+…+$\frac{2n-1}{{2}^{n}}$,
∴$\frac{1}{2}$Sn=$\frac{1}{{2}^{2}}+\frac{3}{{2}^{3}}$+…+$\frac{2n-3}{{2}^{n}}$+$\frac{2n-1}{{2}^{n+1}}$,
∴$\frac{1}{2}$Sn=$\frac{1}{2}+$2$(\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+…+\frac{1}{{2}^{n}})$-$\frac{2n-1}{{2}^{n+1}}$=2×$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$-$\frac{1}{2}$-$\frac{2n-1}{{2}^{n+1}}$=$\frac{3}{2}$-$\frac{2n+3}{{2}^{n+1}}$,
∴Sn=3-$\frac{2n+3}{{2}^{n}}$.

点评 本题考查了“错位相减法”与等比数列的前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网