题目内容
若实数满足不等式组,则目标函数的最大值为( )
A. B. C. D.
(本小题满分12分)
(Ⅰ)已知某椭圆的左右焦点分别为,且经过点,求该椭圆的标准方程以及离心率;
(Ⅱ)某圆锥曲线以坐标轴为对称轴,中心为坐标原点,且过点,求该曲线的标准方程、焦点以及离心率;
平面截球所得截面的面积为,球心到截面的距离为,此球的体积为( )
A、 B、 C、 D、
已知全集,集合,,则为( )
选修4 - 4:坐标系与参数方程(本小题满分10分)
在极坐标系中,曲线,有且仅有一个公共点.
(1)求;
(2)为极点,为曲线上的两点,且,求的最大值.
已知为等差数列,若,则的值为( )
(本小题满分12分)数列,的每一项都是正数,,,且,,成等差数列,,,成等比数列,.
(Ⅰ)求,的值;
(Ⅱ)求数列, 的通项公式;
(Ⅲ)证明:对一切正整数,有.
(本小题满分12分)已知数列的前项和为,,,.
(Ⅰ) 求证:数列是等比数列;
(Ⅱ) 设数列的前项和为,,点在直线上,若不等式对于恒成立,求实数的最大值。
已知椭圆,为其左、右焦点,为椭圆上任一点,的重心为,内心,且有(其中为实数),椭圆的离心率
(A) (B) (C) (D)