ÌâÄ¿ÄÚÈÝ

11£®ÒÑÖªÃüÌâp£º?x¡ÊR£¬3x-3¡Ü0£®Èô£¨©Vp£©¡ÄqÊǼÙÃüÌ⣬ÔòÃüÌâq¿ÉÒÔÊÇ£¨¡¡¡¡£©
A£®Å×ÎïÏßy=$\frac{1}{4}$x2µÄ½¹µã×ø±êΪ£¨0£¬1£©
B£®Ë«ÇúÏß$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{6}$=2µÄÓÒ¶¥µãµ½Æä×ó¡¢ÓÒ½¹µãµÄ¾àÀëÖ®±ÈΪ3
C£®º¯Êýf£¨x£©=x3-3x2+bÔÚÇø¼ä£¨-¡Þ£¬-1£©ÉÏÎÞ¼«Öµµã
D£®ÇúÏßf£¨x£©=x3-3x2+5Ôڵ㣨1£¬f£¨1£©£©´¦ÇÐÏßµÄÇãб½Ç´óÓÚ$\frac{3¦Ð}{4}$

·ÖÎö ÓÉÌâÒâ¿ÉÖªÃüÌâpÊǼÙÃüÌ⣬¸ù¾Ý¸´ºÏÃüÌâµÄÅжϣ¬Çó³öqÊǼÙÃüÌ⣬ȻºóÖðÒ»ÅжÏËĸöÑ¡ÏîµÃ´ð°¸£®

½â´ð ½â£ºÃüÌâp£º?x¡ÊR£¬3x-3¡Ü0£¬ÊǼÙÃüÌ⣬
¹Ê©VpÊÇÕæÃüÌ⣬
¶ø£¨©Vp£©¡ÄqÊǼÙÃüÌ⣬
¹ÊqÊǼÙÃüÌ⣬
¶ÔÓÚA£ºÅ×ÎïÏßy=$\frac{1}{4}$x2»¯Îªx2=4y£¬Æä½¹µã×ø±êΪ£¨0£¬1£©£¬¹ÊAÊÇÕæÃüÌ⣻
¶ÔÓÚB£ºË«ÇúÏß$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{6}$=2µÄÓÒ¶¥µãΪ£¨$\sqrt{2}$£¬0£©£¬×óÓÒ½¹µã·Ö±ðΪF1£¨$-2\sqrt{2}$£¬0£©£¬F2£¨$2\sqrt{2}$£¬0£©£¬
ÓÒ¶¥µãµ½Æä×ó¡¢ÓÒ½¹µãµÄ¾àÀëÖ®±ÈΪ$\frac{\sqrt{2}-£¨-2\sqrt{2}£©}{2\sqrt{2}-\sqrt{2}}=3$£¬¹ÊBÎªÕæÃüÌ⣻
¶ÔÓÚC£ºº¯Êýf£¨x£©=x3-3x2+b£¬f¡ä£¨x£©=3x2-6x£¬ÓÉf¡ä£¨x£©=3x2-6x=0£¬µÃx=0»òx=2£®
µ±x¡Ê£¨-¡Þ£¬0£©£¬£¨2£¬+¡Þ£©Ê±£¬f£¨x£©ÎªÔöº¯Êý£¬µ±x¡Ê£¨0£¬2£©Ê±£¬f£¨x£©Îª¼õº¯Êý£¬Ôòº¯Êýf£¨x£©=x3-3x2+bÔÚÇø¼ä£¨-¡Þ£¬-1£©ÉÏÎÞ¼«Öµµã£¬¹ÊCÎªÕæÃüÌ⣻
¶ÔÓÚD£ºÓÉf£¨x£©=x3-3x2+5£¬µÃf¡ä£¨x£©=3x2-6x£¬Ôòf¡ä£¨1£©=-3£¼-1£¬¡àÇúÏßf£¨x£©=x3-3x2+5Ôڵ㣨1£¬f£¨1£©£©´¦ÇÐÏßµÄÇãб½ÇСÓÚ$\frac{3¦Ð}{4}$£¬¹ÊDÊǼÙÃüÌ⣮
¹ÊÑ¡£ºD£®

µãÆÀ ±¾Ì⿼²éÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦Ó㬿¼²éÁËË«ÇúÏߵļ¸ºÎÐÔÖÊ£¬¿¼²éÀûÓõ¼ÊýÑо¿º¯ÊýµÄµ¥µ÷ÐÔ£¬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø