题目内容

15.两封信随机地投入到编号为A,B,C的三个空邮筒中,则A邮筒中信件数x的数学期望E(x)等于(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{2}{9}$D.$\frac{4}{9}$

分析 由题意知ξ的取值有0,1,2,当ξ=0时,表示的事件是A邮箱的信件数为0,由分步计数原理知两封信随机投入A、B、C三个空邮箱,共有3×3种结果,而满足条件的A邮箱的信件数为0的结果数是2×2,由古典概型公式得到ξ=0时的概率,同理可得ξ=1时,ξ=2时的概率,用期望公式得到结果

解答 解:A邮筒中信件数X可能为0,1,2.
则P(X=0)=$\frac{2×2}{3×3}$=$\frac{4}{9}$,P(X=1)=$\frac{4}{9}$,P(X=2)=$\frac{1}{9}$,
其分布列为:

 X 0 1 2
 P $\frac{4}{9}$$\frac{4}{9}$ $\frac{1}{9}$
其数学期望E(X)=0+1×$\frac{4}{9}$+2×$\frac{1}{9}$=$\frac{2}{3}$.
故选:B.

点评 本题考查了古典概率计算公式及其随机变量的数学期望,考查了分类讨论方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网