题目内容
已知各项均正的数列{an}的前n项和为Sn,且2Sn=(1)求{an}的通项公式
(2)设数列bn=
【答案】分析:(1)利用数列递推式,再写一式,两式相减,可得{an}是以1为公差的等差数列,从而可求{an}的通项公式
(2)利用裂项法,即可求数列{bn}的前n项的和Tn.
解答:解:(1)∵2Sn=
(an2+an),2Sn+1=
(an+12+an+1)
∴两式相减可得(an+1+an)(an+1-an-1)=0,
∵数列{an}各项均正,
∴an+1-an=1,
∴{an}是以1为公差的等差数列,
∵2S1=
(a12+a1),
∴a1=1
∴an=n;
(2)bn=
(
)
∴Tn=
=
(
)=
.
点评:本题考查数列递推式,考查数列的通项与求和,考查学生分析解决问题的能力,属于中档题.
(2)利用裂项法,即可求数列{bn}的前n项的和Tn.
解答:解:(1)∵2Sn=
∴两式相减可得(an+1+an)(an+1-an-1)=0,
∵数列{an}各项均正,
∴an+1-an=1,
∴{an}是以1为公差的等差数列,
∵2S1=
∴a1=1
∴an=n;
(2)bn=
∴Tn=
点评:本题考查数列递推式,考查数列的通项与求和,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目