题目内容
已知各项均为正数的数列﹛an﹜,对于任意正整数n,点(an,sn)在曲线y=
(x2+x)上
(1)求证:数列﹛an﹜是等差数列;
(2)若数列﹛bn﹜满足bn=
,求数列﹛bn﹜的前n项和Tn.
| 1 |
| 2 |
(1)求证:数列﹛an﹜是等差数列;
(2)若数列﹛bn﹜满足bn=
| 1 |
| an•an+2 |
分析:(1)由点(an,sn)在曲线y=
(x2+x)上,知Sn=
(an2+an),故Sn-1=
(an-12+an-1),n≥2,从而得an=Sn-Sn-1=
[(an2+an)-(an-12+an-1)],所以an-an-1=1.由此能够证明数列﹛an﹜是等差数列.
(2))由Sn=
(an2+an),解得a1=1,由an-an-1=1.知an=1+(n-1)=n,故bn=
=
=
(
-
),由此利用裂项求和法能求出数列﹛bn﹜的前n项和.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
(2))由Sn=
| 1 |
| 2 |
| 1 |
| an•an+2 |
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
解答:解:(1)∵各项均为正数的数列﹛an﹜,对于任意正整数n,点(an,sn)在曲线y=
(x2+x)上,
∴Sn=
(an2+an),①
∴Sn-1=
(an-12+an-1),n≥2,②
①-②,得an=Sn-Sn-1=
[(an2+an)-(an-12+an-1)]
∴an-12+an-1=an2-an,
∴an2-an-12=an+an-1,
∴an-an-1=1.
∴数列﹛an﹜是等差数列.
(2)∵Sn=
(an2+an),
∴a1=
(a12+a1),解得a1=1,a1=0(舍),
∵an-an-1=1.
∴an=1+(n-1)=n,
∴bn=
=
=
(
-
),
∴数列﹛bn﹜的前n项和
Tn=b1+b2+b3+…+bn
=
(1-
)+
(
-
)+
(
-
)+…+
(
-
)
=
(1+
-
-
)
=
-
-
.
| 1 |
| 2 |
∴Sn=
| 1 |
| 2 |
∴Sn-1=
| 1 |
| 2 |
①-②,得an=Sn-Sn-1=
| 1 |
| 2 |
∴an-12+an-1=an2-an,
∴an2-an-12=an+an-1,
∴an-an-1=1.
∴数列﹛an﹜是等差数列.
(2)∵Sn=
| 1 |
| 2 |
∴a1=
| 1 |
| 2 |
∵an-an-1=1.
∴an=1+(n-1)=n,
∴bn=
| 1 |
| an•an+2 |
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
∴数列﹛bn﹜的前n项和
Tn=b1+b2+b3+…+bn
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
=
| 3 |
| 4 |
| 1 |
| 2n+2 |
| 1 |
| 2n+4 |
点评:本题考查数列的性质和应用,等差关系的确定,等比数列的前n项和等.解题时要认真审题,注意计算能力的培养.
练习册系列答案
相关题目