题目内容
已知各项均正的数列{an}的前n项和为Sn,且2Sn=
(an2+an)
(1)求{an}的通项公式
(2)设数列bn=
,求数列{bn}的前n项的和Tn.
| 1 |
| 2 |
(1)求{an}的通项公式
(2)设数列bn=
| 1 |
| anan+2 |
(1)∵2Sn=
(an2+an),2Sn+1=
(an+12+an+1)
∴两式相减可得(an+1+an)(an+1-an-1)=0,
∵数列{an}各项均正,
∴an+1-an=1,
∴{an}是以1为公差的等差数列,
∵2S1=
(a12+a1),
∴a1=1
∴an=n;
(2)bn=
(
-
)
∴Tn=
(1-
+
-
+…+
-
)=
(1+
-
-
)=
.
| 1 |
| 2 |
| 1 |
| 2 |
∴两式相减可得(an+1+an)(an+1-an-1)=0,
∵数列{an}各项均正,
∴an+1-an=1,
∴{an}是以1为公差的等差数列,
∵2S1=
| 1 |
| 2 |
∴a1=1
∴an=n;
(2)bn=
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
∴Tn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| n(3n+5) |
| 2(n+1)(n+2) |
练习册系列答案
相关题目